【摘要】等腰三角形常用輔助線專題練習(含答案):已知,點D、E在三角形ABC的邊BC上,AB=AC,AD=AE,求證:BD=CE。證明:作AF⊥BC,垂足為F,則AF⊥DE?!逜B=AC,AD=AE又∵AF⊥BC,AF⊥DE,∴BF=CF,DF=EF(等腰三角形底邊上的高與底邊上的中線互相重合)?!郆D=CE.,在三角形ABC中,AB=AC,AF平行B
2025-06-25 05:16
【摘要】第1頁共3頁八年級數(shù)學巧用輔助線證三角形全等專題練習試卷簡介:通過典型例題給學生介紹兩種三角形全等中常用輔助線的做法:備長中線法和截長補短法。通過本例題,使學生能夠掌握這兩種解題方法。學習建議:全等三角形是歷年中考數(shù)學必考內(nèi)容,這類問題題型比較多樣,很多問題都會考查輔助線的做法,這些例題就是根據(jù)同學們學習中的常見問題
2025-08-11 21:57
【摘要】全等三角形及其輔助線作法常見輔助線的作法有以下幾種:1)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”(或構(gòu)造平行線的X型全等).2)遇到角平分線,一是可以自角平分線上的某一點向角的兩邊作垂線,二是在角的兩邊上截取相同的線段,構(gòu)成全等。利用的思維模式是三角形全等變換中的“對折”,也是運用了角的對稱性。3)截長法與
2025-06-23 21:59
【摘要】全等三角形問題中常見的輔助線的作法總論:全等三角形問題最主要的是構(gòu)造全等三角形,構(gòu)造二條邊之間的相等,構(gòu)造二個角之間的相等“三線合一”法:遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題:倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形:遇到有二條線段長之和等于第三條線段的長,:有一個角為60度或120度的把該角添線后構(gòu)成等邊三角形、60度的作垂
2025-06-19 22:49
【摘要】(1)“取長補短法“證線段的和差關(guān)系1、如圖,AC∥BD,EA,EB分別平分∠CAB,∠DBA,CD過點E,求證;AB=AC+BD_E_C_D_B_A2:如圖,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于點D,CE垂直于BD,交BD的延長線于點E。求證:BD=2CE。
2025-04-04 03:26
【摘要】山亭育才中學翟夫連①∵AD是△ABC的中線∴BD=CDABDC②S△ABD=S△ADC(等底同高)③中線的取值范圍常用的輔助線(見中線加倍延長構(gòu)造全等三角形)AB-AC2AB+AC2AD1中線1中線④重心(三
2025-10-31 22:05
【摘要】數(shù)學·八年級·上冊第十三章全等三角形湛江第一中學金沙灣學校林創(chuàng)三角形全等的判定問題:如何才能確定兩個三角形全等呢?提示:可以從以下幾個方面去考慮1、定義2、角3、邊4、邊和角
2025-10-28 18:15
【摘要】三角形全等的條件⑵先任意畫出一個△ABC,再畫一個△A/B/C/,使A/B/=AB,∠A/=∠A,A/C/=AC。把畫好的△A/B/C/剪下,放到△ABC上,它們?nèi)葐幔刻骄?已知:任意△ABC,畫一個△A/B/C/,使A/B/=AB,∠A/=∠A,A
2025-10-28 13:41
【摘要】第一篇:全等三角形 復習提問通過前兩個問題復習鞏固上一節(jié)所講的知識,通過問題3引導學生認識到三角形全等是證明角相等、線段相等的重要方法,然后設(shè)疑,如何證明兩個三角形全等?從而引出課題。 活動二:講...
2025-10-12 21:09
【摘要】創(chuàng)設(shè)情節(jié),提出問題下列各組圖形的形狀與大小有什么特點?能夠重合的圖形叫做全等圖形(1)(2)(3)(4)能夠重合兩個三角形叫做全等三角形小試身手下列說法是否正確,并簡要說明理由:(1)邊長相等的正方形都是全等圖形;(2)同一面中華人民共和國國旗上,
2025-07-18 09:49
【摘要】全等三角形下列各組圖形的形狀與大小有什么特點?能夠重合的圖形叫做全等圖形(1)(2)(3)(4)能夠重合的兩個三角形叫做全等三角形小試身手判斷下列說法是否正確,并說明理由:(1)邊長相等的正方形都是全等圖形;(2)同一面中華人民共和國國旗上,4個小五角星
2025-08-01 17:35
【摘要】第十二章全等三角形專題強化三巧添輔助線構(gòu)造全等三角形2022秋季數(shù)學八年級上冊?R強化角度1連接線段法1.如圖,已知線段AB、CD相交于點O,AD、CB的延長線交于點E,OA=OC,EA=EC,試說明:∠A=∠C.證明:連接OE.在△EAO與△E
2025-06-19 16:39
【摘要】三角形中做輔助線的技巧口訣:三角形圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。線段和差及倍半,延長縮短可試驗。線段和差不等式,移到同一三角去。三角形中兩中點,連接則成中位線。三角形中有中線,延長中線等中線。1、由角平分線想到的輔助線
2025-03-24 12:31
【摘要】全等三角形復習1、全等三角形能夠完全重合的兩個三角形叫做全等三角形。一個三角形經(jīng)過平移、翻折、旋轉(zhuǎn)可以得到它的全等形。2、全等三角形性質(zhì):(1):全等三角形的對應邊相等、對應角相等。(2):全等三角形的周長相等、面積相等。(3):全等三角形的對應邊上的對應中線、角平分線、高線分別相等。3、全等三角形的判定:邊邊邊:三邊對應相等的兩個三角形全等(“SSS”)
2025-06-07 15:45
【摘要】第十九章全等三角形命題與定理第一課時教學內(nèi)容:命題教學目標:了解命題、定義的含義;對命題的概念有正確的理解。會區(qū)分命題的題設(shè)和結(jié)論。知道判斷一個命題是假命題的方法。教學重點:找出命題的題設(shè)和結(jié)論。教學難點:命題概念的理解。教學過程:一、復習引入:我們已經(jīng)學過一些圖形
2025-04-16 23:10