【正文】
對(duì)原函數(shù)存在條件的探討中文摘要 在微積分學(xué)中原函數(shù)存在是其理論的核心原函數(shù)存在定理初步揭示了積分學(xué)中定積分與原函數(shù)之間的關(guān)系引用導(dǎo)函數(shù)的性質(zhì)以及微積分基本定理來論證原函數(shù)存在得到了原函數(shù)存在的條件對(duì)原函數(shù)存在條件的探討最后用原函數(shù)存在的條件去解決生活中的實(shí)際例子Abstract: in calculus, the original function existence is the core of the theory. The original function existence theorem initially revealed the relationship between the original function and the integral in integral calculus and reference guide function and the fundamental theorem of calculus to prove the existence of primitive function, the original function of the existence condition is obtained, discussion on the existence conditions of the original function, conditions for the original function exists to solve practical examples in life.關(guān)鍵詞 原函數(shù) 定積分 導(dǎo)函數(shù) 微積分基本定理Keywords: primary function, integral, derivative, the fundamental theorem of calculus, Newton Leibniz formula引言 微積分基本定理即原函數(shù)存在定理和newtonleibniz公式肯定了連續(xù)函數(shù)的原函數(shù)存在的重大意義有利于我們研究原函數(shù)的特殊性質(zhì)newtonleibniz公式則是證明原函數(shù)存在的一個(gè)公式因此它們都具有十分重要的意義 在教學(xué)中我們學(xué)習(xí)了導(dǎo)數(shù)性質(zhì)不定積分可積的概念來計(jì)算定積分利用newtonleibniz公式計(jì)算定積分的值然而定積分的計(jì)算用黎曼可積往往比較復(fù)雜為尋求簡(jiǎn)便計(jì)算方法引入原函數(shù)為此原函數(shù)和可積之間在某些情況下就聯(lián)系起來了在微積分學(xué)中我們探討原函數(shù)存在的條件能夠充分認(rèn)識(shí)導(dǎo)函數(shù)的性質(zhì)證明原函數(shù)存在通過原函數(shù)存在性將積分與導(dǎo)數(shù)緊密聯(lián)系在一起其中運(yùn)用到newtonle