【摘要】張寧中級教師2020年名師課堂輔導(dǎo)講座—高中部分學(xué)習(xí)內(nèi)容1、不等式的性質(zhì)2、證明不等式的主要依據(jù)①baba????0baba????0②不等式的性質(zhì)學(xué)習(xí)內(nèi)容③幾個重要不等式ⅰ)(02Raa??ⅱ),(222Rbaabba???ⅲ),(2??
2025-11-09 22:38
【摘要】.......初二數(shù)學(xué)不等式解下列不等式:(1)x-17<-5;(2)>-3;(3)>11;(4)>.(5)3x+1>
2025-03-25 07:46
【摘要】不等式和不等式組錢旭東淮安市啟明外國語學(xué)校蘇科版義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書九年級復(fù)習(xí)課回顧·知識一元一次不等式(組)的應(yīng)用一元一次不等式(組)的解法一元一次不等式(組)解集的含義一元一次不等式(組)的概念不等式的性質(zhì)一元一次不等式和一元一次不等式組回顧·知識:含
2025-10-03 13:38
【摘要】第一篇:不等式證明,均值不等式 1、設(shè)a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2025-10-25 17:10
【摘要】類比基本不等式的形式,猜想對于3個正數(shù)a,b,c,可能有類比基本不等式的形式,猜想對于3個正數(shù)a,b,c,可能有,那么,當(dāng)且僅當(dāng)a=b=c時,等號成立.??Rcba,,33abccba???.,,3,,,:333等號成立時當(dāng)
2025-05-01 15:39
【摘要】第八講不等式與不等式組一、知識網(wǎng)絡(luò)結(jié)構(gòu)圖二、考點精析考點一:不等式基本性質(zhì)運用1.由x0D.a2,則a的取值范圍是( ?。〢.a(chǎn)0B.aC.a&l
2025-04-16 12:51
【摘要】利用放縮法證明數(shù)列型不等式壓軸題摘要:縱觀近幾年高考數(shù)學(xué)卷,壓軸題很多是數(shù)列型不等式,其中通常需要證明數(shù)列型不等式,它不但可以考查證明不等式和數(shù)列的各種方法,而且還可以綜合考查其它多種數(shù)學(xué)思想方法,充分體現(xiàn)了能力立意的高考命題原則。處理數(shù)列型不等式最重要要的方法為放縮法。放縮法的本質(zhì)是基于最初等的四則運算,利用不等式的傳遞性,其優(yōu)點是能迅速地化繁為簡,化難為易,達(dá)到事半功倍的效
2025-03-24 12:45
【摘要】......基本不等式習(xí)專題之基本不等式做題技巧【基本知識】1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)(3)若,則(當(dāng)且僅當(dāng)時取“=”)(4)當(dāng)且僅當(dāng)
2025-05-13 23:45
【摘要】不等式與不等式組專題復(fù)習(xí)(一)不等式考點1:不等式的定義知識點::用符號“<”“>”“≤”“≥”表示大小關(guān)系的式子叫做不等式。(像a+2≠a-2這樣用“≠”號表示不等關(guān)系的式子也是不等式。):①x是正數(shù),則x>0;②x是負(fù)數(shù),則x<0;③x是非負(fù)數(shù),則x≥0;④x是非正數(shù),則x≤0;⑤x大于y,則x-y>0;⑥x小于y,則x-y<0;
【摘要】歡迎交流唯一QQ1294383109希望大家互相交流不等式一、選擇題1.“13x12”是“不等式|x-1|1成立”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件解析:選A.∵不等式|x-1|1的解集為(0,2),
2025-08-13 20:08
【摘要】......1.(2018?卷Ⅱ)設(shè)函數(shù)f(x)=5-|x+a|-|x-2|(1)???當(dāng)a=1時,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a的取值范圍
2025-04-17 01:45
【摘要】函數(shù)法根據(jù)所給不等式的特征,利用函數(shù)的性質(zhì)及函數(shù)圖象來證明不等式成立的方法,稱之為函數(shù)法。荊州師范學(xué)院張軍濤教學(xué)目標(biāo)重點掌握函數(shù)的單調(diào)
2025-11-10 02:58
【摘要】初二數(shù)學(xué)不等式解下列不等式:(1)x-17<-5;(2)>-3;(3)>11;(4)>.(5)3x+1>4;(6)3-x-1;(7)2(x+1)3x;(8)3(x
【摘要】不等式的解法舉例(2)——高次不等式與分式不等式的解法.教學(xué)目的:掌握簡單高次不等式與分式不等式的解法.教學(xué)重點:把四類分式不等式轉(zhuǎn)化為整式不等式來解,用轉(zhuǎn)化法、列表法與標(biāo)根法求解分式、高次不等式:整理→標(biāo)根→畫線→選解教學(xué)難點:1.分式不等式轉(zhuǎn)化為整式不等式來解,進(jìn)而化歸到一元一次、一元二次不等式來解. 2.帶
2025-06-23 23:35
【摘要】不等式與不等式組綜合檢測題一、選擇題1,若-a>a,則a必為()2,已知a<0,-1<b<0,則a,ab,ab2之間的大小關(guān)系是()>ab>ab2>ab2>a>a>ab2D.ab<a<ab23,(
2025-11-03 02:11