【摘要】第一講?函數(shù)、連續(xù)與極限一、理論要求函數(shù)的基本性質(zhì)(單調(diào)、有界、奇偶、周期)幾類常見函數(shù)(復(fù)合、分段、反、隱、初等函數(shù))極限存在性與左右極限之間的關(guān)系夾逼定理和單調(diào)有界定理會(huì)用等價(jià)無窮小和羅必達(dá)法則求極限函數(shù)連續(xù)(左、右連續(xù))與間斷理解并會(huì)應(yīng)用閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(最值、有界、介值)二、題型與解法(1
2025-07-21 10:42
【摘要】;)()(任意小表示AxfAxf????.的過程表示???xXx.0sin)(,無限接近于無限增大時(shí)當(dāng)xxxfx?問題:如何用數(shù)學(xué)語言刻劃函數(shù)“無限接近”.第二節(jié)函數(shù)極限的定義和性質(zhì)一、自變量趨向無窮大時(shí)函數(shù)的極限XX???A??Aoxy)(xfy?A定義1.設(shè)函數(shù)大于某一正數(shù)時(shí)有定義,若
2025-07-22 11:10
【摘要】一、概念的引入§2.數(shù)列的極限我們?cè)诰w論中講到:我們利用階梯形的面積來逼近曲邊三角形的面積(見下頁演示).硯恢陪楔灰橡妒豪棠淪講焰墩爽賭篡愈甸竅包舌客鞠秀萄象限慣矣例班掙微積分86751微積
2025-01-20 05:31
【摘要】第一部分多變量微分學(xué)一、多元函數(shù)極限論1.多元函數(shù)極限的定義:(1)鄰域型定義:設(shè)函數(shù)的定義域?yàn)椋堑木埸c(diǎn),如果存在常數(shù),對(duì)于任意給定的正數(shù),總存在正數(shù),使得當(dāng)點(diǎn)時(shí),都有,那么就稱常數(shù)為函數(shù)當(dāng)時(shí)的極限,記作(2)距離型定義:設(shè)函數(shù)的定義域?yàn)?,是的聚點(diǎn),如果存在常數(shù),對(duì)于任意給定的正數(shù),總存在正數(shù),使得當(dāng)點(diǎn),且時(shí),都有,那么就稱常數(shù)為函數(shù)當(dāng)時(shí)的極限,記作注:①這里給出的是數(shù)
2025-01-15 04:55
【摘要】導(dǎo)數(shù)和微分在書寫的形式有些區(qū)別,如y'=f(x),則為導(dǎo)數(shù),書寫成dy=f(x)dx,則為微分。積分是求原函數(shù),可以形象理解為是函數(shù)導(dǎo)數(shù)的逆運(yùn)算。通常把自變量x的增量Δx稱為自變量的微分,記作dx,即dx=Δx。于是函數(shù)y=f(x)的微分又可記作dy=f'(x)dx,而其導(dǎo)數(shù)則為:y'=f'(x)。設(shè)F(x)為函數(shù)f(x)的一個(gè)原函數(shù),我們把
2025-08-05 06:33
【摘要】一、六個(gè)基本積分二、待定系數(shù)法舉例三、小結(jié)第四節(jié)有理函數(shù)的積分有理函數(shù)的定義:兩個(gè)多項(xiàng)式的商表示的函數(shù)稱之為有理函數(shù).mmmmnnnnbxbxbxbaxaxaxaxQxP?????????????11101110)()(??其中m、n
2025-08-21 12:39
【摘要】本科生畢業(yè)設(shè)計(jì)(論文)微積分基本定理及應(yīng)用Thefundamentaltheoremofcalculousanditsapplication院(系):江西師范大學(xué)科學(xué)技術(shù)學(xué)院數(shù)信系專業(yè)年級(jí):數(shù)學(xué)與應(yīng)用數(shù)學(xué)(師范類)2010級(jí)姓名:
2025-06-20 05:31
【摘要】沈陽工業(yè)大學(xué)本科生畢業(yè)設(shè)計(jì)(論文)微積分有限差分的研究畢業(yè)論文目錄摘要...............................................................引言...............................................................第一章空調(diào)的營銷渠道............
2025-06-22 21:30
【摘要】一、問題的提出二、定積分的定義三、存在定理四、幾何意義五、小結(jié)思考題第一節(jié)定積分的概念abxyo??A曲邊梯形由連續(xù)曲線實(shí)例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.一、問題的提出)(xfy?ab
2025-08-21 12:42
【摘要】第4講定積分與微積分的基本定理★知識(shí)梳理★1、定積分概念定積分定義:如果函數(shù)在區(qū)間上連續(xù),用分點(diǎn),將區(qū)間等分成幾個(gè)小區(qū)間,在每一個(gè)小區(qū)間上任取一點(diǎn),作和,當(dāng)時(shí),上述和無限接近某個(gè)常數(shù),這個(gè)常數(shù)叫做函數(shù)在區(qū)間上的定積分,記作,即,這里、分別叫做積分的下限與上限,區(qū)間叫做積分區(qū)間,函數(shù)叫做被積函數(shù),叫做積分變量,叫做被積式.2、定積分性質(zhì)(1);
2025-08-17 05:56
【摘要】微積分公式與定積分計(jì)算練習(xí)(附加三角函數(shù)公式)一、基本導(dǎo)數(shù)公式⑴⑵⑶⑷⑸⑹⑺⑻⑼⑽⑾⑿⒀⒁⒂⒃⒄⒅二、導(dǎo)數(shù)的四則運(yùn)算法則三、高階導(dǎo)數(shù)的運(yùn)算法則(1)
2025-03-25 01:57
【摘要】一、分部積分公式二、小結(jié)思考題第五節(jié)定積分的分部積分法設(shè)函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導(dǎo)數(shù),則有??ddbbbaaauvuvvu????.定積分的分部積分公式推導(dǎo)??,vuvuuv???????()d,bbaauvxuv?????d
2025-08-11 16:42
【摘要】費(fèi)馬(fermat)引理第六節(jié)微分中值定理且在x0處可導(dǎo),若)(?或證則0?0?xyo0x設(shè)f(x)在點(diǎn)x0的某鄰域U(x0)內(nèi)有定義,有則例如,32)(2???xxxf).1)(3(???xx,]3,1[上連續(xù)在?,)3,1(上可
2025-07-22 11:20
【摘要】清華大學(xué)譚澤光的幾點(diǎn)建議學(xué)好《微積分》1912,04,102/24本講內(nèi)容一、了解微積分二、喜歡微積分三、掌握微積分3/24微積分的基本內(nèi)容研究函數(shù)的性質(zhì)與表示函數(shù)函數(shù)的表示函數(shù)的性質(zhì)
2025-10-09 13:43
【摘要】微積分基本定理(79)31、變速直線運(yùn)動(dòng)問題變速直線運(yùn)動(dòng)中路程為21()dTTvtt?設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),且0)(?tv,求物體在這段時(shí)間內(nèi)所經(jīng)過的路程.另一方面這段路程可表示為)()(12TsTs?原函數(shù)存在
2024-12-08 00:51