【摘要】主講老師:復習第一章解三角形復習正弦定理:2sinsinsinARCcBba???復習正弦定理:2sinsinsinARCcBba???BacAbcCabABCsin21sin21sin21S)3(????
2025-10-31 08:50
【摘要】全國卷歷年高考三角函數(shù)及解三角形真題歸類分析三角函數(shù)一、三角恒等變換(3題)1.(2015年1卷2)=()(A)(B)(C)(D)【解析】原式===,故選D.考點:本題主要考查誘導公式與兩角和與差的正余弦公式.2.(2016年3卷)(5)若,則()(A)(B)
2025-06-26 05:02
【摘要】要點疑點考點課熱身能力思維方法延伸拓展誤解分析第6課時三角形中的有關(guān)問題前要點要點穧疑點疑點穧考點考點1.正弦定理:(1)定理:a/sinA=b/sinB=c/sinC=2R(其中R為△ABC外接圓的半徑
2025-10-31 01:52
【摘要】第十講解三角形ABCabc△ABC中:A+B+C=?(1)(2)22CBA????22C???(3)BAbaBAsinsin?????RCcBbAa2sinsinsin???正弦定理:??
2025-08-05 17:10
【摘要】的應(yīng)用解三角形問題是三角學的基本問題之一。什么是三角學?三角學來自希臘文“三角形”和“測量”。最初的理解是解三角形的計算,后來,三角學才被看作包括三角函數(shù)和解三角形兩部分內(nèi)容的一門數(shù)學分學科。解三角形的方法在度量工件、測量距離和高度及工程建筑等生產(chǎn)實際中,有廣泛的應(yīng)用,在物理學中,有關(guān)向量的計算也要用到解三角形的方法。
2025-11-01 01:32
【摘要】山亭育才中學翟夫連①∵AD是△ABC的中線∴BD=CDABDC②S△ABD=S△ADC(等底同高)③中線的取值范圍常用的輔助線(見中線加倍延長構(gòu)造全等三角形)AB-AC2AB+AC2AD1中線1中線④重心(三
2025-10-31 22:05
【摘要】第2講三角變換與解三角形感悟高考明確考向(2010·陜西)如圖,A,B是海面上位于東西方向相距5(3+3)海里的兩個觀測點,現(xiàn)位于A點北偏東45°,B點北偏西60°的D點有一艘輪船發(fā)出求救信號,位于B點南偏西60°且與B點相
2025-11-03 17:43
【摘要】?1.1正弦定理一、正弦定理1.在一個三角形中,各邊和它所對角的正弦的比相等,即①________=2R(其中R是△ABC外接圓的半徑).2.正弦定理的三種變形(1)a=2RsinA,②________,c=2RsinC;(2)③________,s
2025-11-03 17:10
【摘要】.,....三角函數(shù)與解三角形高考真題1.【2015湖南理17】設(shè)的內(nèi)角,,的對邊分別為,,,,且為鈍角.(1)證明:;(2)求的取值范圍.2.【2014遼寧理17】(本小題滿分12分)在中,內(nèi)角A,B,C的對邊a,b,c,且,已知,
2025-04-16 12:49
【摘要】,可以將函數(shù)的圖象 ( ?。〢.向右平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向左平移個單位長度,則()A. B. C. D.,設(shè)A、B兩點在河的兩岸,一測量者在A的同側(cè)所在的河岸邊選定一點C,測出AC的距離為50m,后,就可以計算出A、B兩點的距離為()A.B.C.D.( ?。〢.B.
【摘要】..三角函數(shù)及解三角形練習題 一.解答題(共16小題)1.在△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,求C的大小.2.已知3sinθtanθ=8,且0<θ<π.(Ⅰ)求cosθ;(Ⅱ)求函數(shù)f(x)=6cosxcos(x﹣θ)在[0,]上的值域.3.已知是函數(shù)f(x)=2cos2x+asin2x+1的一個零點.(Ⅰ)求實數(shù)a的值;
2025-08-05 03:08
【摘要】三角函數(shù)及解三角形練習題 一.解答題(共16小題)1.在△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,求C的大?。?.已知3sinθtanθ=8,且0<θ<π.(Ⅰ)求cosθ;(Ⅱ)求函數(shù)f(x)=6cosxcos(x﹣θ)在[0,]上的值域.3.已知是函數(shù)f(x)=2cos2x+asin2x+1的一個零點.(Ⅰ)求實數(shù)a的值;(Ⅱ
2025-03-24 05:42
【摘要】鳳凰出版?zhèn)髅郊瘓F版權(quán)所有網(wǎng)站地址:南京市湖南路1號B座808室聯(lián)系電話:025-83657815Mail:第8講三角變換與解三角形1.掌握三角函數(shù)的公式(同角三角函數(shù)關(guān)系式、誘導公式、和、差角及倍角公式)及應(yīng)用;能正確運用三角公式進行簡單三角
2025-08-13 20:11
【摘要】第八單元 平面向量與解三角形(120分鐘 150分)第Ⅰ卷一、選擇題:本大題共12小題,每小題5分,,只有一項是符合題目要求的. △ABC的三內(nèi)角A、B、C所對邊的長分別為a、b、c,若2csinB=b,則角C的大小為 C. D.解析:由正弦定理得2sinB
2025-08-05 05:48
【摘要】WORD完美格式1.(2013大綱)設(shè)的內(nèi)角的對邊分別為,.(I)求(II)若,求.2.(2013四川)在中,角的對邊分別為,且.(Ⅰ)求的值;(Ⅱ)若,,求向量在方向上的投影.3.(2013山東)設(shè)△的內(nèi)角所對的邊分別為,且,,.(Ⅰ)求的值;(Ⅱ)求的值.4
2025-08-05 15:44