【正文】
下面六個方法有助于你更完滿透徹地敞開心扉。 Junior high school, thought to have a crush on just means that the real growth, but over the past three years later, his writing of alumni in peace, suddenly found that isn39。s governing body, has also ordered an immediate investigation into the referee39。t agree with the disciplinary action your employer has taken against you your employer dismisses you and you think that you have been dismissed unfairly. For more informu, take advice from one of the anisations listed under Fur ther help. Employment tribunals are less formal than some other courts, but it is still a legal process and you will need to give evidence under an oath or affirmation. Most people find making a claim to an employment tribunal challenging. If you are thinking about making a claim to an emp loyment tribunal, you should get help straight away from one of the anisations listed under Further help. ation about dismissal and unfair dismissal, see Dismissal. You can make a claim to an employment tribunal, even if you haven39。 3.若 ? ?? cxxxf xed)( ,則 ?)(xf ? ?1 xxe? . 4.若 ? ?? cxxxf 2sind)( ,則 )(xf 2cos2x . 5.若 cxxxxf ??? lnd)( ,則 ?? )(xf 1x . 6.若 ? ?? cxxxf 2co sd)( ,則 ?? )(xf 4cos2x? . 7. ?? ? xx ded 2 2xe dx? . 8. ??? xx d)(sin sinxc? . 9. 若 ? ?? cxFxxf )(d)( ,則 ? ?? xxf d)32( ? ?1 232 F x c?? . 10. 若 ? ?? cxFxxf )(d)( ,則 ? ?? xxxf d)1( 2 ? ?21 12F x c? ? ? . 二、單項選擇題(每小題 2 分,共 16 分) 1.下列等式成立的是( ). A. )(d)(dd xfxxfx ?? B. )(d)( xfxxf ??? C. )(d)(d xfxxf ?? D. )()(d xfxf ?? 解:應選 A 2.若 cxxxf x ??? 22 ed)( ,則 ?)(xf ( ) . A. )1(e2 2 xx x ? B. xx 22e2 C. xx2e2 D. xx2e 解:兩邊同時求導,得: xx exxexf 222 22)( ?? ? )1(e2 x ? , 所以應選 A 10 3.若 )0()( ??? xxxxf ,則 ??? xxf d)( ( ) . A. cxx ?? B. cxx ??2 C. cxx ?? 23223 D. cxx ?? 2323221 解:應選 A 4.以下計算正確的是( ) A.3ln3dd3 xx x? B. )1(d1 d 22 xxx ??? C. xxx dd ? D. )1d(dlnxxx ? 解:應選 A 5. ???? xxfx d)( ( ) A. cxfxfx ??? )()( B. cxfx ?? )( C. cxfx ?? )(21 2 D. cxfx ??? )()1( 解: ???? xxfx d)( ? ? ????????? cxfxfxdxxfxfxxfxd )()()()()( , 所以應選 A 6. ? ? xa xdd 2 =( ). A. xa2? B. xaa x dln2 2?? C. xa xd2? D. cxa x ?? d2 解:應選 C 7.如果等式 ? ??? ?? Cxxf xx 11 ede)( ,則 ?)(f ( ) A. x1? B. 21x? C. x1 D. 21x 解:兩邊求導,得:211 1)(xeexf xx ??? ?? , 所以 21)( xxf ?? ,故應選 B 三、計算題(每小題 7 分,共 35 分) 1. ? ?? xx xxx dsin3 3 解: ? ?? xx xxx dsin3 3 ??? ??? x dxdxxdxx s in13 cxxx ???? c os32ln3 23 2. xx d)12( 10? ? 解: xx d)12( 10? ? cxxdx ???????? ?? 11010 )12(110 121)12()12(21 cx ??? 11)12(221 3. xx xd1sin2? 11 解: xx xd1sin2? cxxdx ???? ? 1c os)1(1s in 4. ? xxx d2sin 解: ? xxx d2sin ?? ????? )2c os2c os(212c os21 x dxxxxxd cxxx ???? 2s in412c os21 5. ? ? xxexd 解: ? ? xxexd cexedxexex d e xxxxx ????????? ????? ?? )( 四、極值應用題(每小題 12 分,共 24 分) 1. 設矩形的周長為 120 厘米,以矩形的一邊為軸旋轉一周得一圓柱體。故應選 A 3.函數(shù) 2 22)( xxxxf ??? 的圖形是關于( )對稱. A. xy? B. x 軸 C. y 軸 D.坐標原點 解:因為 )(2 222 22)()( )( xfxxxf xxxx ?????????? ???? 所以函數(shù) 2 22)( xxxf ??? 是奇函數(shù) 從而函數(shù) 2 22)( xxxxf ??? 的圖形是關于坐標原點對稱的 因此應選 D 4.下列函數(shù)中為奇函數(shù)是( ). A. xxsin B. xln C. )1ln( 2xx ?? D. 2xx? 解:應選 C 5.函數(shù) )5ln(41 ???? xxy 的定義域為( ). A. 5??x B. 4??x C. 5??x 且 0?x D. 5??x 且 4??x 解:??? ?? ?? 05 04xx,??? ???? 54xx,所以應選 D 6.函數(shù))1ln( 1)( ?? xxf的定義域是( ). A. ),1( ?? B. ),1()1,0( ??? C. ),2()2,0( ??? D. ),2()2,1( ??? 3 解:??? ?? ?? 01 0)1ln(xx,??? ??12xx, 函數(shù))1ln( 1)( ?? xxf的定義域是 ),2()2,1( ??? ,故應選 D 7.設 1)1( 2 ??? xxf ,則 ?)(xf ( ) A. )1( ?xx B. 2x C. )2( ?xx D. )1)(2( ?? xx 解: 1)1( 2 ??? xxf ]2)1)[(1()1)(1( ??????? xxxx )2()( ?? xxxf ,故應選 C 8.下列各函數(shù)對中,( )中的兩個函數(shù)相等. A. 2)()( xxf ? , xxg ?)( B. 2)( xxf ? , xxg ?)( C. 2ln)( xxf ? , xxg ln2)( ? D. 3ln)( xxf ? , xxg ln3)( ? 解:兩個函數(shù)相等必須滿足①定義域相同②函數(shù)表達式相同 , 所以應選 D 9.當 0?x 時,下列變量中為無窮小量的是( ) . A. x1 B. xxsin C. )1ln( x? D.2xx 解:因為 0)1ln(lim0 ??? xx,所以當 0?x 時, )1ln( x? 為無窮小量 , 所以應選 C 10.當 ?k ( )時,函數(shù)??? ???? 0, 0,1)( 2 xk xxxf ,在 0? 處連續(xù) . A. 0 B. 1