【摘要】立體幾何綜合大題(理科)40道及答案1、四棱錐中,⊥底面,,,.(Ⅰ)求證:⊥平面;(Ⅱ)若側棱上的點滿足,求三棱錐的體積?!敬鸢浮?Ⅰ)證明:因為BC=CD,即為等腰三角形,又,故.因為底面,所以,從而與平面內(nèi)兩條相交直線都垂直,故⊥平面。(Ⅱ)解:.由底面知.由得三棱錐的高為,故:2、如圖,四棱錐中,四邊形為矩形,為等腰三角
2025-03-25 06:44
【摘要】第一篇:立體幾何易錯題分析 立體幾何易錯題分析 ,P、Q、R、S分別是所在棱的中點,這四個點不共面的一個圖是() A正解:D 錯因:,b是異面直線,P是不在a,b上的任意一點,下列四個結論:(...
2025-11-06 05:57
【摘要】用補形法解立體幾何題的常用策略羅建中一、棱錐補成棱柱 例1一個四面體的所有棱長都為,四個頂點在同一球面上,則球的表面積為 A. B. C. D.分析:正四面體可看作是正方體經(jīng)過切割而得到,因而構造一個棱長為1的正方體ABCD,則四面體就是棱長為的正四面體,而正方體的外接球就是四面體的外接球,又正方體的對角線長就是球的直徑,易知對角線長度為,故球
2025-03-25 06:05
【摘要】第一篇:立體幾何垂直證明范文 立體幾何專題----垂直證明 學習內(nèi)容:線面垂直面面垂直 立體幾何中證明線面垂直或面面垂直都可轉化為線線垂直,而證明線線垂直一般有以下的一些方法:(1)通過“平移”...
2025-10-05 07:25
【摘要】第一篇:立體幾何線面平行問題 線線問題及線面平行問題 一、知識點11)相交——有且只有一個公共點;(2)平行——在同一平面內(nèi),沒有公共點;(3)異面——不在任何一個平面內(nèi),沒有公共點;.. :推...
2025-10-31 12:02
【摘要】第一篇:立體幾何中不等式問題的證明方法 例談立體幾何中不等式問題的證明方法 立體幾何中的不等式問題具有很強的綜合性,解決這類問題既要有較強的空間想象能力,又要有嚴密的邏輯思維能力,因此有一定的難度...
2025-11-03 12:34
【摘要】第一篇:立體幾何教案奧數(shù) 第九講立體幾何 知識導航: 在小學階段,我們除了學習習近平面圖形外,還認識了一些簡單的立體圖形,如長方體、正方體(立方體)、直圓柱體,直圓錐體、球體等,并且知道了它們的...
2025-10-12 02:20
【摘要】第一篇:立體幾何證明格式示范 教材P58練習2答案:(注意規(guī)范格式) 證明:連接B1D1 üüM,N分別是A1B1和A1D1中點TMN是DA1B1D1中位線TMN//B1D1üTMN//EF?y...
2025-10-05 07:24
【摘要】第一篇:立體幾何證明已經(jīng)修改 F 1、如圖,在五面體ABCDEF中,F(xiàn)A^平面 DABC,DA//DB//C AF=AB=BC=FE=F^,EAB為,ECAD的M中點,1AD2(1)求異面直線...
2025-10-05 08:53
【摘要】第一篇:立體幾何的證明策略 立體幾何的證明策略: 幾何法證明 證明平行:3,2,11、線線平行:公理四,10頁 線面平行的性質(zhì)定理,課本20頁面面平行的性質(zhì)定理,36頁 2、線面平行:線面平...
2025-11-03 18:00
【摘要】第一篇:立體幾何證明大題 立體幾何證明大題 1.如圖,四面體ABCD中,AD^平面BCD,E、F分別為AD、AC的中點,BC^CD.求證:(1)EF//平面BCD(2)BC^平面ACD. 2、如...
2025-11-03 13:02
【摘要】第一篇:立體幾何證明與解答 必修2第一章《立體幾何初步》單元教學分析 1、本章節(jié)在整個教材體系中的地位和作用 本章教材是高中數(shù)學學習的重點之一,通過研究空間幾何體的結構特征、三視圖和直觀圖、表面...
2025-11-06 06:00
【摘要】立體幾何教案 篇一:立體幾何全部 第一章:空間幾何體 、錐、臺、球的構造特征 一、教學目的 1.知識與技能 (1)通過實物操作,加強學生的直觀感知。 (2)能按照幾何構造特征對空間物...
2025-03-30 06:20
【摘要】 (理)第3講 立體幾何中的向量方法 [考情考向·北京朝陽期末導航] 空間向量在立體幾何中的應用主要體現(xiàn)在利用空間向量解決立體幾何中的位置關系、空間角以及空間距離的計算等問題,是每年北京朝陽期末...
2025-04-03 02:18
【摘要】2020年12月19日星期六用空間向量解決立體幾何問題的步驟:(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點、直線、平面,把立體幾何問題轉化為向量問題;(2)通過向量運算,研究點、直線、平面之間的位置關系以及它們之間距離和夾角等問題;(3)把向量的運算結果“翻譯”成相應的幾何意義。(化為向量問題)(進行向量運
2025-11-03 01:34