freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

機(jī)械-直線倒立擺的穩(wěn)定控制算法設(shè)計(jì)-預(yù)覽頁(yè)

 

【正文】 ? ? ? ? 切削力矩 : 0Mt? 估算電機(jī)輸出的總力矩 M=Ma+Mf+0 所以 M=+= / 3 0 3 . 1 4 1 . 3 6 2 0 0 0 / 3 0 2 8 4P M n w?? ? ? ? ? ? ? 在這里由于忽略了同步帶與齒輪之間的摩擦及擺桿的慣性力矩, 所以對(duì)電機(jī)的選擇 : (1)能滿足控 制精度的要求 (2)能滿足負(fù)載轉(zhuǎn)矩的要求 (3)滿足慣量的匹配原則 (4)應(yīng)考慮到這些中間因素應(yīng)該使得所選電機(jī)的額定輸出功率 =估算值的 2~3 倍。 (3)運(yùn)行特性良好,自動(dòng)半流鎖定,可靠性高 ??刂葡到y(tǒng)的數(shù)學(xué)模型是描述系統(tǒng)內(nèi)部物理量或變量之間關(guān)系的數(shù)學(xué)表達(dá)式。建立控制系統(tǒng)數(shù)學(xué)模型的方法有分析法和實(shí)驗(yàn)法兩種。下面我們采用分析法來(lái) 對(duì) 倒立擺的數(shù)學(xué)模型 進(jìn)行分析 。為了與控制理論的表達(dá)習(xí)慣相統(tǒng)一,即 u 一般表示控制量,用 u 來(lái)代表被控對(duì)象的輸入力 F ,線性化后兩個(gè)運(yùn)動(dòng)方程如下: ? ?????????????umlxbxmMxmlm glmlI??? ?????????)(2 () 對(duì)方程組( )進(jìn)行拉普拉斯變換,得到: ? ?????? ????? ????? )()()()()( )()()(22222sUssmlssbXssXmMssm lXsm glssmlI () 畢業(yè)設(shè)計(jì)(論文) 12 注意:推導(dǎo)傳遞函數(shù)時(shí)假設(shè)初始條件為 0。 一級(jí)直線倒立擺控制器設(shè)計(jì)與仿真 控制器設(shè)計(jì)及算法仿真 PID 控制以其結(jié)構(gòu)簡(jiǎn)單、穩(wěn)定性好、工作可靠、調(diào) 整方便而成為工業(yè)控制的主要技術(shù)之一。 PID 控制原理如圖 畢業(yè)設(shè)計(jì)(論文) 16 圖 PID 控制原理 下面是通過(guò)對(duì)倒立擺在 MATLAB 中的 M 文件實(shí)現(xiàn)對(duì)倒立擺的仿真曲線,整定參數(shù)的步驟如下: Kd 和微分系數(shù) Ki 均設(shè)置為 0,比例系數(shù) Kp 設(shè)置為較小的值,使系統(tǒng)運(yùn)行,同理在分別將其他兩個(gè)參數(shù)改為 0,總結(jié)這三個(gè)參數(shù)對(duì)系統(tǒng)響應(yīng)的影響。 對(duì)微分系數(shù)的變化卻不是很大,曲線的響應(yīng)過(guò)程也不是很明顯,但是在這里也可以看出,當(dāng) P=1, I=3, D=5000 時(shí),系統(tǒng)的動(dòng)態(tài)特性是最合適的。 LQR 控制器設(shè)計(jì)及算法仿真 前面已經(jīng)得到了直線一級(jí)倒立擺系統(tǒng)的系統(tǒng)狀態(tài)方程,以外界作用力作為輸入的系統(tǒng)狀態(tài)方程和輸出方程分別為: 0 1 0 0 00 0. 08 83 16 7 0. 62 93 17 0 0. 88 31 670 0 0 1 00 0. 23 56 55 27 .8 28 5 0 2. 35 65 5x xx xu?????? ??? ? ? ??? ??? ? ? ???? ??? ? ? ????? ??? ? ? ??? ??? ? ? ??? ? ? ????? ? ? ? ????? 1 0 0 0 00 0 1 0 0xxxyu???????? ? ? ? ? ???? ? ?? ? ? ? ? ???? ? ? ? ? ??????? 二次型性能指標(biāo)函數(shù): ? ?**0J X Q X u Ru dt???? Q、 R 是用來(lái)平衡狀態(tài)向量和輸入向量的權(quán)重, Q 是半正定陣, R 是正定陣。下面是對(duì) Q, R 值的變換得到的仿真曲線: 先 令 x=1, y=1,運(yùn)行后得到: K =[ ] 仿真曲線如圖 所示: 圖 系統(tǒng)響應(yīng)曲線圖 當(dāng) x=10, y=5000 時(shí),如圖 : 當(dāng) x=10, y=500 時(shí),如圖 : 畢業(yè)設(shè)計(jì)(論文) 20 圖 系統(tǒng)響應(yīng)曲線 圖 系統(tǒng)響應(yīng)曲線 從上圖中可以看出 ,當(dāng) y 減小時(shí) , 小車(chē)的響應(yīng)曲線穩(wěn)定得到了提高,響應(yīng)時(shí)間有明顯的改善,現(xiàn)在保持 y 不變,變換 x 值: 當(dāng) x=1000, y=500 時(shí),如圖 所示: 圖 系統(tǒng)響應(yīng)曲線 從 仿真結(jié)果可知, X 在 1000 以上或者較大時(shí),系統(tǒng)響應(yīng)結(jié)果很好,小車(chē)和擺桿可以在很短時(shí)間內(nèi)達(dá)到平衡,表明 X 值的變化對(duì)系統(tǒng)動(dòng)態(tài)性能有很大影響。 計(jì)算狀態(tài)反饋增益矩陣 K 可以直接利用 Matlab 的極點(diǎn)配置函數(shù) [K,PREC, MESSAGE] = PLACE(A, B, P) 來(lái)計(jì)算。 在 PID 控制算法中,比例系數(shù) Kp 主要影響超調(diào)量和響應(yīng)時(shí)間,積分系數(shù) Ki 主要影響靜差和超調(diào)量,微分系數(shù) Kd 主要影響系統(tǒng)的調(diào)節(jié)時(shí)間。 極點(diǎn)控制算法中控制系統(tǒng)的穩(wěn)定性和動(dòng)態(tài)性能指標(biāo)很大情況上取決于其閉環(huán)系統(tǒng)的零極點(diǎn)分布情況,根據(jù)極點(diǎn)計(jì)算出最佳的狀態(tài)反饋矩陣 K。 PID 中須根據(jù)調(diào)節(jié)者的經(jīng)驗(yàn)參考初始位置進(jìn)行調(diào)整,初學(xué)者比較費(fèi)時(shí)費(fèi)力。二級(jí)倒立擺的組成如圖 所示: 圖 直線二級(jí)倒立擺物理模型 系統(tǒng)模型各相關(guān)參 數(shù)定義如表 表 系統(tǒng)模型參數(shù) 利用拉格朗日方程推導(dǎo)運(yùn)動(dòng)學(xué)方程: ( , ) ( , ) ( , )L q T q V qq q? ? ??? ( ) 式 ( ) 中 L 為 拉格朗日算子, q 為系統(tǒng)的廣義坐標(biāo), T 為系統(tǒng)動(dòng)能, V 為系統(tǒng)勢(shì)能。 39。39。39。2Tm 分別為擺桿 2 的平均動(dòng)能和轉(zhuǎn)動(dòng)動(dòng)能。39。 22 22 2 2 22 6T J m lmp ? ?? ?? ? ( ) 1 ( ) ( )22( ( ) ( ) )332 d X m d Y mTmm d t d t?? ( ) 于是有系統(tǒng)的總動(dòng)能: 1 2 3m m m mT T T T T? ? ? ? ( ) ? 212Mx? + 1 ( 1 ) ( 1 )22( ( ) ( ) )12 d X p d Y pm d t d t?+ 2 211 116ml?? + 1 ( 2 ) ( 2 )22( ( ) ( ) )22 d X p d Y pm d t d t?+ 1 2 22226ml?? + 1 ( ) ( )22( ( ) ( ) )32 d X m d Y mm d t d t? 系統(tǒng)的勢(shì)能為: 121 2 3 1 2 3V V V V m Y p m Y p m Y mm m m? ? ? ? ? ? ( ) ? c o s ( 2 c o s c o s ) 2 c o s1 1 1 2 1 1 2 2 3 1 1m l m l l m l? ? ? ?? ? ? 由式( )、( )、( )可知拉格朗日算子: ( , ) ( , ) ( , )L q T q V qq q q? ? ??? ( ) 21 1 ( 1 ) ( 1 ) 1 ( 2 )2 2 2( ( ) ( ) ) ( ( )122 2 2M x d X p d Y p d X pmmd t d t d t?? ? ? ? ( 2)2( ) )d Ypdt? 1 1 ( ) ( )2 2 22 ( ( ) ( ) )2 2 3262 d X m d Y mm l m d t d t? ?? ? ? cos11 1ml ?? ( 2 c o s c o s ) 2 c o s2 1 1 2 2 3 1 1m l l m l? ? ?? ? ? 由于系統(tǒng)在 12,??廣義坐標(biāo)下沒(méi)有外力作用,所以有: 畢業(yè)設(shè)計(jì)(論文) 27 120102d L ldtd L ldt????????? ??? ??????? ??? ??? ( ) 將式 ( )展開(kāi),并對(duì) 1??? 和 2??? 求代數(shù)方程,最后表示為: 1??? = 1f (x , 1? , 2? ,x? , 1?? , 2?? ,x?? ) ( ) 2??? = 1f (x , 1? , 2? ,x? , 1?? , 2?? ,x?? ) 取平衡位置時(shí)各變量的初值為零: ? ?, , , , ,1 2 1 2xx? ? ? ?? ? ?=? ?0, 0, 0, 0, 0, 0 將式 ( ) 在平衡位置附近進(jìn)行泰勒級(jí)數(shù)展開(kāi),并線性化處理,令: 111 0 0AfK x ????? () 1 2 311 2 01 1 2 3 13 ( 2 4 4 )2 ( 4 3 1 2 )A g m g m g mfK m m m l? ? ? ? ????? ? ? ? () 121 3 02 1 2 3 192 ( 4 3 1 2 )Af m gK m m m l? ????? ? ? ? () 114 0 0AfK x ????? () 115 01 0AfK ? ????? () 116 02 0AfK ? ????? () 1 2 311 7 0 1 2 3 13 ( 2 4 )2 ( 4 3 1 2 )A m m mfK x m m m l? ? ? ????? ? ? ? () 得到線性化之后的公式 : xKKK ???? 172131121 ??? ??? () 將 ),( 212122 xxxf ??????? ????? ? 在平衡位置進(jìn)行泰勒級(jí)數(shù)展開(kāi),并線性化,令 221 0 0AfK x ????? () 1 2 3222 01 2 2 1 2 3 22 ( 2( ) )164 ( 3 ( ) )9Ag m m mfKm l m m m l? ??????? ? ? ? () 畢業(yè)設(shè)計(jì)(論文) 28 1 2 3223 02 2 2 1 2 3 24 ( 3 ( ) )163 ( 4 ( 3 ( ) ) )9Ag m m mfKm l m m m l? ????? ? ?? ? ? ? () 224 0 0AfK x ????? () 225 01 0AfK ? ????? () 226 02 0AfK ? ????? () 1 2 3 1 2 322 7 02 2 1 2 3 242 ( 2 ( ) ) ( 3 ( )3164 ( 3 ( ) )9Am m m m m mfK xm l m m m l?? ? ? ? ?????? ? ? () 得到 : xKKK ???? 272231222 ??? ??? () 即 : xKKK ???? 172131121 ??? ??? () xKKK ???? 272231222 ??? ??? () 現(xiàn)在得到了兩個(gè)線性微分方程,由于我們采用加速度作為輸入,因此還需加上一個(gè)方程 : xu ??? () 取狀態(tài)變量如下: ?????????????????2615423121???????xxxxxxxx () 則 狀態(tài)空間方程如下: uKKxxxxxxKKKKxxxxxx??????????????????????????????????????????????????????????????????????????????????271765432123221312654321100000000000000000100000010000001000
點(diǎn)擊復(fù)制文檔內(nèi)容
研究報(bào)告相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1