【摘要】章末質(zhì)量評估(一)(時間:100分鐘滿分:120分)一、選擇題(本題共10小題,每小題5分,共50分)1.分析法是從要證明的結(jié)論出發(fā),逐步尋求使結(jié)論成立的().A.充分條件B.必要條件C.充要條件D.等價條件答案A2.在下列各函數(shù)中,最小值等于2的函數(shù)是().A
2025-11-25 23:43
【摘要】章末質(zhì)量評估(四)(時間:100分鐘滿分:120分)一、選擇題(本題共10小題,每小題5分,共50分)1.??01(ex+2x)dx等于().A.1B.e-1C.eD.e+1解析??01(ex+2x)dx=(ex+x2)|
【摘要】PK!宻燾?[Content_Types].xml?(?
2025-11-26 06:36
【摘要】復合函數(shù)的導數(shù)復習回顧基本初等函數(shù)的求導公式簡記??????????????xxaxxeeaaaxxxxnxxCaxxxxnn1ln1lo.6sincocossi.2'''
2025-07-25 22:48
【摘要】甲和乙投入相同資金經(jīng)營同一商品,甲用1年時間掙到2萬元,乙用5個月時間掙到1萬元。從這樣的數(shù)據(jù)看來,甲、乙兩人誰的經(jīng)營成果更好?情境一:情境二:如右圖所示,向高為10cm的杯子等速注水,3分鐘注滿。若水深h是關于注水時間t的函數(shù),則下面兩個圖象哪一個可以表示上述函數(shù)?Ot/m
2025-11-08 15:20
【摘要】§2導數(shù)的概念及其幾何意義導數(shù)的概念課時目標.,并理解其實際意義.設函數(shù)y=f(x),當自變量x從x0變到x1時,函數(shù)值從f(x0)變到f(x1),函數(shù)值y關于x的平均變化率為ΔyΔx=1-0x1-x0=0+Δ-0Δx.當x1趨于x0,即Δx趨于0
2025-11-26 06:46
【摘要】簡單復合函數(shù)的導數(shù)課時目標能求形如f(ax+b)形式的復合函數(shù)的導數(shù).[來源:Z|xx|k.Com]復合函數(shù)的概念一般地,對于兩個函數(shù)y=f(u)和u=g(x),如果通過變量u,y可以表示成x的函數(shù),那么稱這個函數(shù)為y=f(u)和u=g(x)的復合函數(shù),記作y=f(g(x)).
2025-11-26 09:29
【摘要】第2課時微積分基本定理..1664年秋,牛頓開始研究微積分問題,他反復閱讀笛卡兒《幾何學》,對笛卡兒求切線的“圓法”產(chǎn)生了濃厚的興趣并試圖尋找更好的方法,以前,面積總是被看成是無限小不可分量之和,牛頓則從確定面積的變化率入手,通過反微分計算面積.牛頓不僅揭示了面積計算與求切線的互逆關系,而且十分
2025-11-26 06:35
【摘要】第3課時定積分的簡單應用,并能利用積分公式表進行計算.,建立它的數(shù)學模型,并能利用積分公式表進行計算.,體會到微積分把不同背景的問題統(tǒng)一到一起的巨大作用和實用價值.實際生活中許多變量的變化是非均勻變化的,如非勻速直線運動在某時間段內(nèi)位移;變力使物體沿直線方向移動某位移區(qū)間段內(nèi)所做的功;非均勻
2025-11-10 20:36
【摘要】山東省泰安市肥城市第三中學高中數(shù)學教案導數(shù)的概念及計算學案新人教A版選修2-2學習內(nèi)容學習指導即時感悟?qū)W習目標:1、了解導數(shù)概念的實際背景。2、理解導數(shù)的幾何意義.3、能根據(jù)導數(shù)的定義求函數(shù)xyxyxyxycy?????,1,,,2的導數(shù)。4、能利用給出的基本初等函數(shù)的導數(shù)公式和導數(shù)的四則運算法則
2025-11-10 17:30
【摘要】§計算導數(shù)學習目標思維脈絡1.會用導數(shù)的定義求函數(shù)y=c,y=x,y=x2,y=1x的導數(shù).2.記住基本初等函數(shù)的求導公式.3.能利用求導公式求簡單函數(shù)的導數(shù).4.逐步深化對導函數(shù)與函數(shù)內(nèi)在聯(lián)系的認識.121.導函數(shù)
2025-11-09 13:32
【摘要】本課時欄目開關填一填研一研練一練【學習要求】1.理解函數(shù)的平均變化率和瞬時變化率的概念.2.會求物體運動的平均速度并估計瞬時速度.【學法指導】從平均速度和瞬時速度的概念推廣到函數(shù)的平均變化率與瞬時變化率,用來刻畫事物變化的快慢,為導數(shù)的學習作準備.本課時欄目開關
2025-11-08 17:04
【摘要】本課時欄目開關填一填研一研練一練【學習要求】1.直觀了解并掌握微積分基本定理的含義.2.會利用微積分基本定理求函數(shù)的積分.【學法指導】通過探究變速直線運動物體的速度與位移的關系,直觀了解微積分基本定理的含義.微積分基本定理不僅揭示了導數(shù)和定積分之間的內(nèi)在聯(lián)系,而且還提供了計算定積分的一種有
【摘要】導數(shù)及應用(時量:120分鐘150分)一、選擇題:本大題共10小題,每小題5分,共50分.在每小題給出的四個選項中,只有一項是符合題目要求的.1.曲線y=x2+3x在點A(2,10)處的切線的斜率k是A.4B.5C.6D.72.已知二次函數(shù)y=ax2+(a
2025-11-02 12:34
【摘要】山東省泰安市肥城市第三中學高中數(shù)學導數(shù)學案2新人教A版選修2-2學習內(nèi)容學習指導即時感悟【學習目標】1.掌握導數(shù)的概念,導數(shù)公式及計算,導數(shù)在函數(shù)中的應用。能夠用導數(shù)解決生活中的優(yōu)化問題。2.掌握定積分的概念,微積分基本定理及定積分的應用。【學習重點】導數(shù)在研究函數(shù)中的應用。【學習難點】導數(shù)在研究函數(shù)中
2025-11-10 20:37