【摘要】25第二章二次函數(shù)§二次函數(shù)所描述的關(guān)系學(xué)習(xí)目標(biāo):..學(xué)習(xí)重點(diǎn):,獲得用二次函數(shù)表示變量之間關(guān)系的體驗(yàn)..學(xué)習(xí)難點(diǎn):經(jīng)歷探索二次函數(shù)關(guān)系的過程,獲得用二次函數(shù)表示變量之間關(guān)系的體驗(yàn).學(xué)習(xí)方法:討論探索法.學(xué)習(xí)過程:【例1】函數(shù)y=(m+2)
2025-11-21 13:24
【摘要】確定二次函數(shù)的表達(dá)式一、選擇題:1.已知拋物線過A(-1,0),B(3,0)兩點(diǎn),與y軸交于C點(diǎn),且BC=32,則這條拋物線的解析式為()A.y=-x2+2x+3B.y=x2-2x-3C.y=x2+2x―3或y=-x2+2x+3D.y=-
2025-11-19 19:22
【摘要】◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎
2025-06-12 12:35
【摘要】4二次函數(shù)的應(yīng)用第二章二次函數(shù)課堂達(dá)標(biāo)素養(yǎng)提升第二章二次函數(shù)第2課時(shí)最大利潤(rùn)問題課堂達(dá)標(biāo)一、選擇題第2課時(shí)最大利潤(rùn)問題1.若一種服裝的銷售利潤(rùn)y(萬元)與銷售數(shù)量x(萬件)之間滿足函數(shù)表達(dá)式y(tǒng)=-2x2+4x+5,則盈利的最值情況為()A.有最
2025-06-20 15:32
【摘要】第二章二次函數(shù)單元檢測(cè)卷一、選擇題(每小題3分;共33分),當(dāng)y0時(shí),自變量x的取值范圍是()A.-1<x<3B.x<-1C.x>3
2025-11-18 01:07
【摘要】4二次函數(shù)的應(yīng)用第2課時(shí)T恤衫銷售過程中最大利潤(rùn)等問題的過程,體會(huì)二次函數(shù)是一類最優(yōu)化問題的數(shù)學(xué)模型,感受數(shù)學(xué)的應(yīng)用價(jià)值.,并運(yùn)用二次函數(shù)的知識(shí)求出實(shí)際問題的最大值、最小值.(0)ka??2二次函數(shù)y=a(x-h)頂點(diǎn)坐標(biāo)為(h,k)①當(dāng)a0時(shí),y有最小值k②當(dāng)a0時(shí),y有最大值
2025-06-20 22:57
【摘要】4二次函數(shù)的應(yīng)用第1課時(shí),體會(huì)數(shù)學(xué)的模型思想和數(shù)學(xué)應(yīng)用價(jià)值.間的二次函數(shù)關(guān)系,并運(yùn)用二次函數(shù)的知識(shí)解決實(shí)際問題.20)yaxbxca????二次函數(shù)(24,)4acba?b頂點(diǎn)坐標(biāo)為(-2a244acba?①當(dāng)a0時(shí),y有最小值=②當(dāng)a
2025-06-15 02:54
【摘要】第二章二次函數(shù)知識(shí)點(diǎn)1二次函數(shù)與一元二次方程的關(guān)系1.(陜西中考)下列關(guān)于二次函數(shù)y=ax2-2ax+1(a1)的圖象與x軸交點(diǎn)的判斷,正確的是(D),且它位于y軸右側(cè),且它們均位于y軸左側(cè),且它們均位于y軸右側(cè)2.(孝感中考)如圖,拋物線y=ax2與直線y=b
2025-06-18 00:42
2025-06-15 03:00
【摘要】4二次函數(shù)的應(yīng)用第2課時(shí)【基礎(chǔ)梳理】(1)引入_______.(2)用含_______的代數(shù)式分別表示銷售單價(jià)或銷售收入及銷售量.自變量自變量(3)用含_______的代數(shù)式表示銷售的商品的單件盈利.(4)用函數(shù)及含_______的代數(shù)式分別表示銷售利潤(rùn),即___________.(5)根
2025-06-12 13:43
【摘要】4二次函數(shù)的應(yīng)用第1課時(shí)【基礎(chǔ)梳理】利用二次函數(shù)求幾何圖形的最大面積的基本方法(1)引入自變量.(2)用含自變量的代數(shù)式分別表示與所求幾何圖形相關(guān)的量.(3)根據(jù)幾何圖形的特征,列出其面積的計(jì)算公式,并且用函數(shù)表示這個(gè)面積.(4)根據(jù)函數(shù)關(guān)系式,求出最大值及取得最大值時(shí)自變量的值.【自我診斷】
2025-06-14 06:48