【摘要】第一篇:用均值不等式證明不等式 用均值不等式證明不等式 【摘要】:不等式的證明在競賽數(shù)學中占有重要地位.本文介紹了用均值不等式證明幾個不等式,我們在證明不等式時,常用到均值不等式。要求我們要認真分...
2025-10-19 10:42
【摘要】第一篇:基本不等式與不等式基本證明 課時九基本不等式與不等式基本證明 第一部分:基本不等式變形技巧的應用 基本不等式在求解最值、值域等方面有著重要的應用,利用基本不等式時,關鍵在對已知條件的靈活...
2025-10-20 03:11
【摘要】不等式的證明——綜合法導入新課1.證明().2.比較與的大小,并證明你的結(jié)論.嘗試探索,建立新知,求證例1已知證明:因為,則所以故①利用某些已經(jīng)證明過的不等式和不等式的性質(zhì)推導出所要證明的不等式成立,這種證明方法通常叫做綜合法.②綜合法的思路是“由因
2025-07-26 00:13
【摘要】第一篇:不等式的證明(推薦) 不等式的基本性質(zhì) 1、不等式:(1)a2+2f2a,(2)a2+b232(a-b-1),(3)a2+b2fab恒成立的個數(shù)是() (A)0(B)1(C)2(D)3[...
2025-10-30 22:00
【摘要】不等式的證明(習題課)1、比較法(1)比較法證明不等式的步驟作差---變形---判斷符號----得出結(jié)論(2)比較法經(jīng)常證明什么樣的不等式高次整式多項式、所證不等式兩邊有相同或局部相同的部分(3)作差之后變形的思維完全平方、因式積
2025-10-28 21:52
【摘要】課題:含有絕對值的不等式問題當時,則有:那么與及的大小關系怎樣?絕對值的定義:問題這需要討論:當綜上可知:當當定理1:如果a,b是實數(shù),則當且僅當時,等號成立.(1)從向量的角度看:不共線時,由于定理1與三角形之間的這種聯(lián)
2025-08-05 15:37
【摘要】不等式的定義:一般地,用符號“”、“≥”連接的式子叫做不等式不等式的解集可在數(shù)軸上直觀表示。規(guī)律:大于向箭頭,小于向箭尾,有等號(≤、≥)畫實心點,無等號(<、>=畫空心圈。列不等式注意找到問題中不等關系的詞正數(shù)
2025-10-28 21:53
【摘要】2020年12月13日星期日18:41:23不等式復習(一)2020年12月13日星期日18:41:24《不等式》知識結(jié)構不等式均值不等式不等式證明不等式解法不等式應用不
【摘要】喬瑞霞蛟河三中:1.不等式,一元一次不等式2.不等式的解3.不等式的解集4.解一元一次不等式一.基本概念:?不等式的基本性質(zhì)(3條):?1)不等式兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向____.?2)不等式兩邊都乘以(或除以)同一個
2025-08-05 01:06
【摘要】第六章:不等式期末復習:江蘇省前黃高級中學高一數(shù)學組呂楊春第一部分:基本概念1、比較大小(作差——分解因式——判斷符號)注:分解因式到不能分解為止;判斷符號的時候注意有時候要討論2、不等式的性質(zhì)是證明不等式和解不等式的基礎。不等式的基本性質(zhì)有:1)對稱性:ab?ba;2)
2025-10-31 08:12
【摘要】不等式的性質(zhì)不等式不等式的證明不等式的解法應用不等式的性質(zhì)互逆性—ab傳遞性—ab,bc可加性—ab推論移項法則—a+cb同向可加—ab,cd可乘性—ab,推論同向正
2025-07-22 01:43
【摘要】第一篇:均值不等式證明 均值不等式證明 一、已知x,y為正實數(shù),且x+y=1求證 xy+1/xy≥17/ 41=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥ 2當且僅當xy=...
2025-10-27 18:15
【摘要】第一篇:不等式證明[精選] §14不等式的證明 不等式在數(shù)學中占有重要地位,由于其證明的困難性和方法的多樣性,,而變形的依據(jù)是不等式的性質(zhì),不等式的性分類羅列如下:不等式的性質(zhì):a3b?a-b0...
【摘要】高中數(shù)學精講精練第六章不等式【知識圖解】【方法點撥】不等式是高中數(shù)學的重要內(nèi)容之一,不等式的性質(zhì)是解、證不等式的基礎,兩個正數(shù)的算術平均數(shù)不小于它們的幾何平均數(shù)的
2025-08-11 14:54
【摘要】1.(2018?卷Ⅱ)設函數(shù)f(x)=5?|x+a|?|x?2|(1)???當a=1時,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a的取值范圍2.(2013?遼寧)已知函數(shù)f(x)=|x﹣a|,其中a>1(1)當a=2時,求不等式f(x)≥4﹣|x﹣4|的解集;(2)已知關
2025-04-17 01:45