【摘要】(第一課時)單縣一中時克然多米諾骨牌問題情境一已知數(shù)列的通項公式為}{na22)55(???nnan(1)求出其前四項,你能得到什么樣的猜想?(2)你的猜想正確嗎?對于數(shù)列{},na)1(2111????nnnaaa)∈(*Nn
2024-11-17 12:01
【摘要】本課時欄目開關(guān)填一填研一研練一練1.1.1函數(shù)的平均變化率【學(xué)習(xí)要求】1.理解并掌握平均變化率的概念.2.會求函數(shù)在指定區(qū)間上的平均變化率.3.能利用平均變化率解決或說明生活中的一些實際問題.【學(xué)法指導(dǎo)】從山坡的平緩與陡峭程度理解函數(shù)的平均變化率,也可以從
2025-01-13 21:04
【摘要】山東省泰安市肥城市第三中學(xué)高中數(shù)學(xué)變化率問題與導(dǎo)數(shù)的概念學(xué)案新人教A版選修2-2學(xué)習(xí)內(nèi)容學(xué)習(xí)指導(dǎo)即時感悟【學(xué)習(xí)目標(biāo)】1.理解平均變化率與導(dǎo)數(shù)的概念;了解平均變化率的幾何意義、瞬時速度、瞬時變化率的概念;會求函數(shù)在某點處附近的平均變化率及導(dǎo)數(shù)。,推出導(dǎo)數(shù)的概念,理解導(dǎo)數(shù)的內(nèi)涵。?!緦W(xué)習(xí)重點】平均變化
2024-11-19 17:30
【摘要】遼寧省沈陽二中2020-2020學(xué)年度高二下學(xué)期期中考試(數(shù)學(xué)理)
2024-11-15 21:05
【摘要】§學(xué)習(xí)目標(biāo)1.理解曲邊梯形面積的求解思想,掌握其方法步驟;2.了解定積分的定義、性質(zhì)及函數(shù)在上可積的充分條件;3.明確定積分的幾何意義和物理意義;4.無限細(xì)分和無窮累積的思維方法.預(yù)習(xí)與反饋(預(yù)習(xí)教材P42~P47,找出疑惑之處)1.用化歸為計算矩形面積和逼近的思想方法求出曲邊遞形的面積的具體步驟為、
2024-12-08 08:44
【摘要】"福建省長樂第一中學(xué)2020高中數(shù)學(xué)第二章《類比推理》教案新人教A版選修2-2"●教學(xué)目標(biāo):通過對已學(xué)知識的回顧,認(rèn)識類比推理這一種合情推理的基本方法,并把它用于對問題的發(fā)現(xiàn)中去?!窠虒W(xué)重點:了解合情推理的含義,能利用類比進(jìn)行簡單的推理?!窠虒W(xué)難點:用類比進(jìn)行推理,做出猜想。●教具準(zhǔn)備:
2024-11-19 23:25
【摘要】(1)對于某類事物,由它的一些特殊事例或其全部可能情況,歸納出一般結(jié)論的推理方法,叫歸納法.歸納法{完全歸納法不完全歸納法由特殊一般特點:a2=a1+da3=a1+2da4=a1+3d……an=a1+(n-1)d如何證明:1+3+5+…+(2n-1)=
2024-11-18 15:24
【摘要】高二數(shù)學(xué)月考試卷一.選擇題1.下列求導(dǎo)運算正確的是A211)1(xxx????B2ln1)(log2xx??Cexx3log3)3(??D.xxxxsin2)cos(2???2-3i,-3+2i,O是原點,向量OA,OB對應(yīng)的復(fù)數(shù)分別為那么向量BA對
2024-11-15 05:10
【摘要】120y0x1xx?y?xyOy=f(x)1yAB00()()fxxfxyxx???????物體運動的平均速度00()()sttststt???????物體運動的瞬時速度0000()()limlimttstts
【摘要】推理與證明第二章章末歸納總結(jié)第二章知識結(jié)構(gòu)1知識梳理2隨堂練習(xí)4專題探究3知識結(jié)構(gòu)知識梳理推理與證明要解決的主要問題:運用合情推理的思維方式探索、發(fā)現(xiàn)一些數(shù)學(xué)結(jié)論,可運用演繹推理來加以證明.學(xué)會了綜合法、分析法及反
2024-11-17 20:10
【摘要】人民教育出版社普通高中課程標(biāo)準(zhǔn)實驗教科書選修2-2第一章導(dǎo)數(shù)DAOSHU五教學(xué)過程微積分的創(chuàng)立是數(shù)學(xué)發(fā)展中的里程碑,導(dǎo)數(shù)是微積分的核心概念之一.在本節(jié)課中學(xué)生將經(jīng)歷由平均變化率到瞬時變化率刻畫現(xiàn)實問題的過程,理解導(dǎo)數(shù)的含義,體會導(dǎo)數(shù)的內(nèi)涵,感受導(dǎo)數(shù)在解決數(shù)學(xué)問題
2024-11-17 20:07
【摘要】復(fù)習(xí):合情推理?歸納推理從特殊到一般?類比推理從特殊到特殊從具體問題出發(fā)觀察、分析比較、聯(lián)想提出猜想歸納類比觀察與是思考,2整除,,銅能夠?qū)щ?銅是金屬,
【摘要】反證法一.反證法證明命題“設(shè)p為正整數(shù),如果p2是偶數(shù),則p也是偶數(shù)”,我們可以不去直接證明p是偶數(shù),而是否定p是偶數(shù),然后得到矛盾,從而肯定p是偶數(shù)。具體證明步驟如下:假設(shè)p不是偶數(shù),可令p=2k+1,k為整數(shù)??傻胮2=4k2+4k+1,此式表明,p2是奇數(shù),這與假設(shè)矛盾,因此假設(shè)p不是偶數(shù)不成立,從而證明
2024-11-18 01:21
【摘要】2020/12/24復(fù)數(shù)的乘法2020/12/24一、復(fù)數(shù)的乘法法則:(a+bi)(c+di)=ac+bci+adi+bdi2=(ac-bd)+(bc+ad)i顯然任意兩個復(fù)數(shù)的積仍是一個復(fù)數(shù).對于任意z1,z2,z3∈C,有z1?z2=z2?z1,z1?z2?z3=z1
2024-11-17 15:11
【摘要】數(shù)學(xué)歸納法及其應(yīng)用舉例數(shù)學(xué)歸納法是一種證明與正整數(shù)有關(guān)的數(shù)學(xué)命題的重要方法.主要有兩個步驟一個結(jié)論:【歸納奠基】(1)證明當(dāng)n取第一個值n0(如n0=1或2等)時結(jié)論正確(2)假設(shè)n=k(k≥n0,n∈N*)時結(jié)論正確,證明n=k+1時結(jié)論也正確(3)由(1)、(2)得出結(jié)論【歸納遞推】
2024-11-17 05:48