【摘要】選修1-1橢圓的幾何性質一、選擇題1.橢圓6x2+y2=6的長軸的端點坐標是()A.(-1,0),(1,0)B.(-6,0),(6,0)C.(-6,0),(6,0)D.(0,-6),(0,6)[答案]D[解析]∵橢圓的焦點在y軸上,且a2=6,∴長軸
2025-11-15 22:00
【摘要】橢圓的簡單幾何性質212..??.,.小、對稱性和位置等包括橢圓的形狀、大程研究它的幾何性質方下面再利用橢圓的標準橢圓的標準方程立了建出發(fā)幾何特征上面從橢圓的定義?????????.來研究橢圓的幾何性質我們用橢圓的標準方程1012222babyax.,.,幾何性質其特性等來研究它
2025-11-09 15:26
【摘要】復習::平面內到兩定點F1、F2的距離之和為常數(shù)(大于|F1F2|)的動點的軌跡叫做橢圓。:a,b,c的關系是:a2=b2+c2|)|2(2||||2121FFaaPFPF???當焦點在X軸上時當焦點在Y軸上時)0(12222????babyax)0(12222???
2025-07-25 14:44
【摘要】橢圓的標準方程和幾何性質練習題一1.若曲線ax2+by2=1為焦點在x軸上的橢圓,則實數(shù)a,b滿足( )A.a2b2B.0,所以0ab.2.一個橢圓中心在原點,焦點F1,
2025-07-15 02:23
【摘要】橢圓標準方程典型例題一、知識要點:1、橢圓的定義:第一定義:平面內與兩個定點F1、F2的距離之和為等于常數(shù)(大于|F1F2|)的點的軌跡叫做橢圓,這兩個定點叫做橢圓的焦點,兩焦點間的距離叫做焦距.①當,點P無軌跡;②當時,點P的軌跡為線段;③當時,點P的軌跡為橢圓。第二定義:平面內一個動點到一個定點的距離和它到相應的定直線的距離的比是小于1的正常數(shù),這個動點的軌跡叫橢圓,定點是橢
2025-08-09 19:49
【摘要】一.課題:橢圓的幾何性質(1)二.教學目標:(對稱性、范圍、頂點、離心率);。三.教學重、難點:目標1;數(shù)形結合思想的貫徹,運用曲線方程研究幾何性質。四.教學過程:(一)復習:1.橢圓的標準方程。(二)新課講解:1.范圍:由標準方程知,橢圓上點的坐標滿足不等式,∴,,∴,,說明橢圓位于直線,所圍成的矩形里。2
2025-09-25 14:03
【摘要】標準方程范圍對稱性頂點坐標焦點坐標半軸長離心率a、b、c的關系22221(0)xyabab????|x|≤a,|y|≤b關于x軸、y軸成軸對稱;關于原點成中心對稱(a,0)、(-a,0)、(0,b)、(0,-b)(c,0)、(-c,0)長半
2025-11-09 11:25
【摘要】幾何性質(二)1.橢圓的長軸長為,短軸長為,半焦距為,離心率為,焦點坐標為,頂點坐標為.復習導入:81922??yx1.橢圓的長軸長為,短軸長為,半焦距為,離心率為
2025-12-28 14:41
【摘要】復習::到兩定點F1、F2的距離之和為常數(shù)(大于|F1F2|)的動點的軌跡叫做橢圓。:a,b,c的關系是:a2=b2+c2|)|2(2||||2121FFaaPFPF???當焦點在X軸上時當焦點在Y軸上時)0(12222????babyax)0(12222????
【摘要】22194xy??共焦點,且過點(3,-2)的橢圓方程。分析:先確定焦點在哪個坐標軸另解:設橢圓的方程為221(4)94xy?????????則,點(3,-2)代入得6,(6)?????舍去故所求方程為2211510xy??求橢圓的方程12(6,1),(3,2),??
2025-07-25 10:46
【摘要】橢圓的簡單幾何性質典型例題一例1橢圓的一個頂點為,其長軸長是短軸長的2倍,求橢圓的標準方程.分析:題目沒有指出焦點的位置,要考慮兩種位置.解:(1)當為長軸端點時,,,橢圓的標準方程為:;(2)當為短軸端點時,,,橢圓的標準方程為:;說明:橢圓的標準方程有兩個,給出一個頂點的坐標和對稱軸的位置,是不能確定橢圓的橫豎的,因而要考慮兩種情況.典型例
2025-07-23 06:44
【摘要】 方法技巧第五節(jié) 橢圓 最新考綱 考情分析 、幾何圖形、標準方程及簡單幾何性質(范圍、對稱性、頂點、離心率). 2.了解橢圓的簡單應用. 3.理解數(shù)形結合的思想. 、標準方程、幾何性...
2025-04-03 02:19
【摘要】橢圓的簡單幾何性質(三)直線與圓有那些位置關系?如何判斷直線與圓的位置關系?提問:直線與橢圓有那些位置關系?如何判斷直線與橢圓的位置關系?探究一當m取何值時,直線l:y=x+m與橢圓C:9x2+16y2=144相離、相切、相交?該點的坐標。最小距離是多少?并求,到直線的距離最???問橢圓上是否存在一
2025-11-09 01:22
【摘要】《橢圓的幾何性質》教學目標?知識與技能目標?了解用方程的方法研究圖形的對稱性;理解橢圓的范圍、對稱性及對稱軸,對稱中心、離心率、頂點的概念;掌握橢圓的標準方程、會用橢圓的定義解決實際問題;通過例題了解橢圓的第二定義,準線及焦半徑的概念,利用信息技術初步了解橢圓的第二定義.?過程與方法目標?(1)復習與引入過程
2025-07-24 18:14
【摘要】圖形相同點不同點方程焦點頂點準線ba2,2??短軸長長軸長222cba??)10(???eace離心率)0(12222????babyax)0(12222????babxay)0,()0,(21cFcF?),0(),0(21cFcF?),0
2025-11-09 15:25