【摘要】計算導數(shù)同步練習一,選擇題:1.曲線y=ln(2x-1)上的點到直線2x-y+3=0的最短距離是()A、5B、25C、35D、02、設P點是曲線3233???xxy上的任意一點,P點處切線傾斜角為?,則角?的取值范圍是(
2024-12-05 06:39
【摘要】導數(shù)的四則運算法則一、教學目標:掌握八個函數(shù)求導法則及導數(shù)的運算法則并能簡單運用.二、教學重點:應用八個函數(shù)導數(shù)求復雜函數(shù)的導數(shù)..教學難點:商求導法則的理解與應用.三、教學過程:(一)新課1.基本初等函數(shù)的導數(shù)公式(見教材)2.導數(shù)運算法則:(1).和(或差)的導數(shù)法則1兩個函數(shù)的和(或差)的導數(shù),等
2024-12-05 01:49
【摘要】導數(shù)的概念引入:?在高臺跳水運動中,平均速度不能反映他在這段時間里運動狀態(tài),需要用瞬時速度描述運動狀態(tài)。我們把物體在某一時刻的速度稱為瞬時速度.又如何求瞬時速度呢?平均變化率近似地刻畫了曲線在某一區(qū)間上的變化趨勢.?如何精確地刻畫曲線在一點處的變化趨勢呢?)(2????ttth求:從
2024-11-18 12:15
【摘要】江蘇省漣水縣第一中學高中數(shù)學第三章第2課瞬時變化率—導數(shù)(曲線上一點處切線)教學案蘇教版選修1-1班級:高二()班姓名:____________教學目標:1.理解并掌握曲線在某一點處的切線的概念;2.理解并掌握曲線在一點處的切線的斜率的定義以及切線方程的求法;3.理解切線概念的實際背景,培養(yǎng)學生解決實際問
2024-11-20 00:30
【摘要】第3課時計算導數(shù),求函數(shù)y=c,y=x,y=x2,y=等的導數(shù).y=c,y=x,y=x2,y=等的導數(shù).y=c,y=x,y=x2,y=等的導數(shù)公式解決問題..根據(jù)導數(shù)的概念,我們知道可以用定義法求函數(shù)f(x)=x3的導數(shù),那么是否有公式法來求它的導數(shù)呢?問題1:
2024-12-05 06:33
【摘要】數(shù)學命題?一、判斷與命題?1.判斷?判斷是對思維對象有所斷定的一種思維形式。這里所說的斷定,就是“肯定”或“否定”事物的某種性質(zhì)或事物之間有某種關(guān)系。如:是無理數(shù);它不是一位教師。?判斷作為一種思維形式,具有兩個基本的邏輯特征:?(1)必須有斷定。
2025-11-08 15:05
【摘要】數(shù)學:2.1《橢圓》第一課時F2F1M只需將x,y交換位置即得橢圓的標準方程.xyo如果以橢圓的焦點所在直線為y軸,且F1、F2的坐標分別為(0,-c)和(0,c),a、b的含義都不變,那么橢圓又有怎樣的標準方程呢?如果已知橢圓的標準方程
2025-11-08 17:38
【摘要】拓展資料:導數(shù)在證明恒等式中的應用一、預備知識定理1若函數(shù)f(x)在區(qū)間I上可導,且x∈I,有f′(x)=0,則x∈I,有f(x)=c(常數(shù)).證明在區(qū)間I上取定一點x0及x∈I.顯然,函數(shù)f(x)在[x0,x]或[x,x0]上滿足拉格朗日定理,有f(x)-f(x0)=f′(ξ)(x
2024-11-19 23:16
【摘要】-*-本章整合網(wǎng)絡構(gòu)建專題探究導數(shù)應用導數(shù)與函數(shù)的單調(diào)性導數(shù)與函數(shù)的極值導數(shù)與函數(shù)的最值導數(shù)的實際應用專題探究網(wǎng)絡構(gòu)建專題一專題二專題三專題四專題一函數(shù)與方程思想本章中涉及函數(shù)與方程的聯(lián)系如下:題型函數(shù)方程(組)或不等式已知極值求參數(shù)f
2025-11-07 23:22
【摘要】第三章§1理解教材新知把握熱點考向應用創(chuàng)新演練考點一考點二1.1歸納推理問題1:我們知道銅、鐵、鋁、金、銀都是金屬,它們有何物理性質(zhì)?提示:都能導電.問題2:由問題1你能得出什么結(jié)論?提示:一切金屬都能導電.問題3:若
2024-11-18 08:09
【摘要】第三章§1理解教材新知把握熱點考向應用創(chuàng)新演練考點一考點二知識點一知識點二類比推理問題1:試寫出三角形的兩個性質(zhì).提示:(1)三角形的兩邊之和大于第三邊;(2)三角形的面積等于高與底乘積的12.
【摘要】最大值、最小值問題學習目標:理解并掌握函數(shù)最大值與最小值的意義及其求法.弄請函數(shù)極值與最值的區(qū)別與聯(lián)系.養(yǎng)成“整體思維”的習慣,提高應用知識解決實際問題的能力.學習重點:求函數(shù)的最值及求實際問題的最值.學習難點:求實際問題的最值.掌握求最值的方法關(guān)鍵是嚴格套用求最值的步驟,突破難點要把實際問題“數(shù)學化”,即建立數(shù)學模型.學
2024-12-05 06:35
【摘要】-*-函數(shù)的極值首頁XINZHIDAOXUE新知導學ZHONGNANTANJIU重難探究DANGTANGJIANCE當堂檢測學習目標思維脈絡1.結(jié)合函數(shù)的圖像,正確理解函數(shù)極值的概念,了解可導函數(shù)有極值點的充分條件和必要條件.2.掌握利用導數(shù)判斷可導函數(shù)極值的方法,能熟練地求出已知函數(shù)的
2025-11-07 23:23
【摘要】第三章導數(shù)及其應用(時間90分鐘,滿分120分)一、選擇題(本大題共10小題,每小題5分共50分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.設質(zhì)點M按規(guī)律s=3t2+5作直線運動,則質(zhì)點M()A.在t=1時的瞬時速度為11B.在t=2時的瞬時速度為12C.在t=3時的瞬時速度為1
2024-12-05 01:51
【摘要】高考中導數(shù)問題的六大熱點由于導數(shù)其應用的廣泛性,為解決函數(shù)問題提供了一般性的方法及簡捷地解決一些實際問題.因此在高考占有較為重要的地位,其考查重點是導數(shù)判斷或論證單調(diào)性、函數(shù)的極值和最值,利用導數(shù)解決實際問題等方面,下面例析導數(shù)的六大熱點問題,供參考.一、運算問題例1已知函數(shù)22()(1)xbfxx???,求導函數(shù)()fx?.
2024-12-05 06:34