【摘要】空間向量坐標(biāo)法---解決立體幾何問題一.建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,能求點(diǎn)的坐標(biāo);1、三條直線交于一點(diǎn)且兩兩垂直;方便求出各點(diǎn)的坐標(biāo)。2、如何求出點(diǎn)的坐標(biāo):先求線段的長(zhǎng)度(特別是軸上線段):由已知條件可全部求出來;若不能,則可先設(shè)出來。(1)軸上的點(diǎn)--------X軸--(a,0,0),y軸--(0,b,0),z軸--(0,0,c)(2)三個(gè)坐標(biāo)面上的點(diǎn)-
2025-03-25 06:42
【摘要】WORD格式整理1.如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點(diǎn)M在線段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求證:M為PB的中點(diǎn);(2)求二面角B﹣PD﹣A的大??;(3)求直線MC與平面BDP所成角的正弦值.【
2025-07-23 04:50
【摘要】一、基本概念1.空間向量:在空間內(nèi),我們把具有大小和方向的量叫做向量,用有向線段表示.2.向量的模:向量的大小叫向量的長(zhǎng)度或模.記為|,特別地:?①規(guī)定長(zhǎng)度為0的向量為零向量,記作;?②模為1的向量叫做單位向量;3.相等的向量:兩個(gè)模相等且方向相同的向量稱為相等的向量.4.負(fù)向量:兩個(gè)模相等且方向相反的向量是互為負(fù)向量.如的相反向量記為-.
2025-04-17 08:18
【摘要】《空間向量在立體幾何中的應(yīng)用》教學(xué)設(shè)計(jì)(一)知識(shí)與技能、線面角、二面角的余弦值;.(二)過程與方法、線面角、二面角的余弦值的過程;.(三)情感態(tài)度與價(jià)值觀、線面角、二面角的余弦值,用空間向量解決平行與垂直問題的過程,讓學(xué)生體會(huì)幾何問題代數(shù)化,領(lǐng)悟解析幾何的思想;;、運(yùn)用知識(shí)的能力.、難點(diǎn)重點(diǎn):用空間向量求線線角、線面角、二面角的余弦值及解決平行
2025-04-17 08:11
【摘要】空間向量與立體幾何知識(shí)點(diǎn)歸納總結(jié)一.知識(shí)要點(diǎn)。1.空間向量的概念:在空間,我們把具有大小和方向的量叫做向量。注:(1)向量一般用有向線段表示同向等長(zhǎng)的有向線段表示同一或相等的向量。(2)向量具有平移不變性2.空間向量的運(yùn)算。定義:與平面向量運(yùn)算一樣,空間向量的加法、減法與數(shù)乘運(yùn)算如下(如圖)。;;運(yùn)算律:⑴加法交換律:⑵加法結(jié)合
2025-06-23 03:52
【摘要】空間向量練習(xí)題1.如圖所示,四棱錐P-ABCD的底面ABCD是邊長(zhǎng)為1的菱形,∠BCD=60°,E是CD的中點(diǎn),PA⊥底面ABCD,PA=2.(Ⅰ)證明:平面PBE⊥平面PAB;(Ⅱ)求平面PAD和平面PBE所成二面角(銳角)的大小.如圖所示,以A為原點(diǎn),坐標(biāo)分別是A(0,0,0),B(1,0,0),P(0,0,2),(Ⅰ)證明因?yàn)椋?/span>
2025-06-27 22:52
【摘要】第四課文化的繼承性與文化發(fā)展課標(biāo)要求解析中華民族傳統(tǒng)文化在現(xiàn)實(shí)生活中的作用,闡述繼承傳統(tǒng)文化要“取其精華,去其糟粕”的道理。◆討論:如何看待傳統(tǒng)習(xí)俗的價(jià)值?!魪墓偶墨I(xiàn)中摘錄一些至今仍被頻繁引用的傳統(tǒng)道德格言,討論繼承和發(fā)揚(yáng)中華傳統(tǒng)美德在今天的作用?!粼O(shè)計(jì)展板:我國(guó)一些建筑、藝術(shù)、服飾等風(fēng)格和形式的變遷,體現(xiàn)著傳統(tǒng)與現(xiàn)代結(jié)合之美?;居^點(diǎn)1、
2025-05-11 22:03
【摘要】主頁主頁1.了解空間向量的概念.了解空間向量的基本定理及其意義,掌握空間向量的正交分解及其坐標(biāo)表示.2.掌握空間向量的線性運(yùn)算及其坐標(biāo)表示.3.掌握空間向量的數(shù)量積及其坐標(biāo)表示,能用向量的數(shù)量積判斷向量的共線與垂直.一、空間直角坐標(biāo)系的建立及相關(guān)概念:以單位正方體ABCD—A'B'C'D&
2025-04-29 05:53
【摘要】2020年12月19日星期六用空間向量解決立體幾何問題的步驟:(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點(diǎn)、直線、平面,把立體幾何問題轉(zhuǎn)化為向量問題;(2)通過向量運(yùn)算,研究點(diǎn)、直線、平面之間的位置關(guān)系以及它們之間距離和夾角等問題;(3)把向量的運(yùn)算結(jié)果“翻譯”成相應(yīng)的幾何意義。(化為向量問題)(進(jìn)行向量運(yùn)
2024-11-12 01:34
【摘要】用空間向量解立體幾何題型與方法一.平行垂直問題基礎(chǔ)知識(shí)直線l的方向向量為a=(a1,b1,c1).平面α,β的法向量u=(a3,b3,c3),v=(a4,b4,c4)(1)線面平行:l∥α?a⊥u?a·u=0?a1a3+b1b3+c1c3=0(2)線面垂直:l⊥α?a∥u?a=ku?a1=ka3,b1=kb3,c1=kc3(3)面面平行:α∥β?u∥v?u=kv?a
2025-07-24 22:36
【摘要】第一篇:空間向量在立體幾何中的應(yīng)用(一)課時(shí)教案 空間向量在立體幾何中的應(yīng)用 (一)——求空間兩條直線、直線與平面所成的角 知識(shí)與技能:引導(dǎo)學(xué)生探索并掌握利用空間向量求線線角、線面角的基本方法。...
2024-11-06 12:01
【摘要】(一)教學(xué)要求:了解共線或平行向量的概念,掌握表示方法;理解共線向量定理及其推論;掌握空間直線的向量參數(shù)方程;會(huì)運(yùn)用上述知識(shí)解決立體幾何中有關(guān)的簡(jiǎn)單問題.教學(xué)重點(diǎn):空間直線、平面的向量參數(shù)方程及線段中點(diǎn)的向量公式.教學(xué)過程:一、復(fù)習(xí)引入1.回顧平面向量向量知識(shí):平行向量或共線向量?怎樣判定向量與非零向量是否共線?方向相同或者相反的非零向量叫做平行向量.由于任何一組平行向
2025-06-07 23:19
【摘要】本章優(yōu)化總結(jié)專題探究精講本章優(yōu)化總結(jié)知識(shí)體系網(wǎng)絡(luò)章末綜合檢測(cè)知識(shí)體系網(wǎng)絡(luò)專題探究精講空間向量與空間位置關(guān)系用向量方法證明平行與垂直問題的一般步驟是:(1)建立立體圖形與空間向量的關(guān)系,利用空間向量表示問題中所涉及到的點(diǎn)、線、面,把立體幾何問題轉(zhuǎn)化為空間向量問題.
2024-11-12 19:03
【摘要】第3章——空間向量的數(shù)量積[學(xué)習(xí)目標(biāo)],掌握兩個(gè)向量的數(shù)量積的概念、性質(zhì)和計(jì)算方法及運(yùn)算規(guī)律.,會(huì)用它解決立體幾何中一些簡(jiǎn)單的問題.1預(yù)習(xí)導(dǎo)學(xué)挑戓自我,點(diǎn)點(diǎn)落實(shí)2課堂講義重點(diǎn)難點(diǎn),個(gè)個(gè)擊破3當(dāng)堂檢測(cè)當(dāng)堂訓(xùn)練,體驗(yàn)成功[知識(shí)鏈接
2024-11-18 08:08
【摘要】第3章——空間向量及其運(yùn)算空間向量及其線性運(yùn)算[學(xué)習(xí)目標(biāo)],幾何表示法、字母表示法...1預(yù)習(xí)導(dǎo)學(xué)挑戓自我,點(diǎn)點(diǎn)落實(shí)2課堂講義重點(diǎn)難點(diǎn),個(gè)個(gè)擊破3當(dāng)堂檢測(cè)當(dāng)堂訓(xùn)練,體驗(yàn)成功[知識(shí)鏈接]觀察正方體中過同一個(gè)頂點(diǎn)的