【摘要】第四節(jié)一、隱函數(shù)的導數(shù)二、由參數(shù)方程確定的函數(shù)的導數(shù)三、相關變化率機動目錄上頁下頁返回結束隱函數(shù)和參數(shù)方程求導相關變化率第二章一、隱函數(shù)的導數(shù)若由方程可確定y是x的函數(shù),由表示的函數(shù),稱為顯函數(shù).例如,可確定顯函數(shù)
2025-07-24 09:57
【摘要】復合函數(shù)的導數(shù)一、復習與引入:1.函數(shù)的導數(shù)的定義與幾何意義...y=(3x-2)2的導數(shù),那么我們可以把平方式展開,利用導數(shù)的四則運算法則求導.然后能否用其它的辦法求導呢?又如我們知道函數(shù)y=1/x2的導數(shù)是=-2/x3,那么函數(shù)y=1/(3x-2)2的導數(shù)又是什么呢?為了解決上面
2025-10-25 19:25
【摘要】1糾正作業(yè)P98T8(8)dlnlnln,.dyyxx?求解:1(lnln)lnlnyxx???(ln)x?ln[ln(ln)]yx?11lnlnl(lnn)xxx???111lnlnlnxxx???P98T11(3)22d(arct
2025-07-24 09:56
【摘要】五233|7???xdxdyxyy求設例dxdyyx求設例,2522??dxdyxyyx求設例,13432???dxdyxyx求設例,9532???一、隱函數(shù)的導數(shù)定義:.)(稱為隱函數(shù)由方程所確定的函數(shù)xyy?.)(形式稱為顯函數(shù)xfy?0),(?yxF)(xfy?隱函數(shù)的顯化
2025-07-24 06:05
【摘要】?y=f(u),u=(x)?y=f((x))一般的可分解為y=sinu,u=(2x+3)課前復習復合函數(shù)可分解為y=sin(2x+3)?令u=(2x+3)則y=sinu所以復合函數(shù)可分解為:y
2025-05-14 23:10
【摘要】第三節(jié)一、隱函數(shù)的導數(shù)二、由參數(shù)方程所確定的函數(shù)的導數(shù)隱函數(shù)和由參數(shù)方程所確定的函數(shù)的導數(shù)第二章一、隱函數(shù)的導數(shù)1.定義注1°所確定是由若0),()()(???yxFDxxyy;則)(0)](,[DxxyxF??的隱函數(shù),中可由若隱函數(shù)0),()()(???yxFDxxyy.
2025-07-24 06:08
【摘要】11(3)解:212sec2yxxx????y=(1sin)sin(cos)cosxxxxx????sincoscos2xxxx???3(3)解一:??y=sinsincosxxxx???3(3)解二:22si
2025-07-24 06:07
【摘要】一、隱函數(shù)的導數(shù)定義:.)(稱為隱函數(shù)由方程所確定的函數(shù)xyy?.)(形式稱為顯函數(shù)xfy?0),(?yxF)(xfy?隱函數(shù)的顯化問題:隱函數(shù)不易顯化或不能顯化如何求導?隱函數(shù)求導法則:用復合函數(shù)求導法則直接對方程兩邊求導.例1.,00????xyxdxdydxdyy
2025-07-24 06:04
【摘要】§求導法則與導數(shù)公式1.0)(??C;2.1)(??????xx)(R??;3.xxcos)(sin??;4.xxsin)(cos???;5.axxaln1)(log??;xx1)(ln??;
2025-07-24 17:11
【摘要】二、高階導數(shù)的運算法則第三節(jié)一、高階導數(shù)的概念機動目錄上頁下頁返回結束高階導數(shù)與隱函數(shù)的導數(shù)第二章三、隱函數(shù)求導一、高階導數(shù)的概念速度即sv??加速度即)(???sa引例:變速直線運動機動目錄上頁下頁返回
2025-05-12 21:33
【摘要】山東農(nóng)業(yè)大學高等數(shù)學主講人:蘇本堂一、空間曲線的一般方程二、空間曲線的參數(shù)方程三、空間曲線在坐標面的投影§空間曲線及其方程山東農(nóng)業(yè)大學高等數(shù)
2025-07-25 04:16
【摘要】第18章隱函數(shù)定理及其應用§1隱函數(shù)一、隱函數(shù)概念.).sinsin(sin,1,22顯函數(shù)這種形式的函數(shù)稱為如式是自變量的某個算式若函數(shù)的因變量的表達zxyzxyeuyxzxyz??????.J,I)1((1),x,Jy,Ix,YJX
2025-06-17 06:29
【摘要】隱函數(shù)的概念顯函數(shù):因變量可由自變量的某一表達式來表示的函數(shù).例如,隱函數(shù):自變量與因變量之間的對應關系是由某一個方程式所確定的函數(shù).例如,,sin13xy??.22yxz??,3/23/23/2ayx??.03333????xyz
2025-04-29 03:21
【摘要】西南民族大學經(jīng)濟學院毛瑞華微積分(2021~2021下)1§多元復合函數(shù)與隱函數(shù)微分法一、多元復合函數(shù)微分法定理設z=f(u,v)在(u,v)處可微,u=u(x,y),v=v(x,y)在(x,y)處的偏導數(shù)存在,則復合函數(shù)z=f[u(x,y),v(x,y)]在(x,y)處的偏導數(shù)
2025-10-10 14:52
【摘要】高階導數(shù)1、顯函數(shù)的高階導數(shù)(2-n階)2、隱函數(shù)和參數(shù)方程的2階導數(shù)一、顯函數(shù)高階導數(shù)的定義定義.)())((,)()(lim))((,)()(0處的二階導數(shù)在點為函數(shù)則稱存在即處可導在點的導數(shù)如果函數(shù)xxfxfxxfxxfxfxxfxfx??????????????記作
2025-05-13 06:01