【摘要】第六章定積分的應用習題6-2(A)1.求下列函數(shù)與x軸所圍部分的面積:2.求下列各圖中陰影部分的面積:1.圖6-13.求由下列各曲線圍成的圖形的面積:4.5.6.7.8.9.10.11.求由下列各
2025-06-24 03:40
【摘要】練習6-2 練習6-2
2025-01-15 09:23
【摘要】§定積分在物理上的應用由物理學知道,在水深為h處的壓強為hp??,這里?是水的比重.如果有一面積為A的平板水平地放置在水深為h處,那么,平板一側(cè)所受的水壓力為ApP??.如果平板垂直放置在水中,由于水深不同的點處壓強p不相等,平板一側(cè)所受的水壓力就不能直接使用此公式,而采用“元素法”
2025-08-23 14:19
【摘要】2設函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導數(shù),則有??????bababavduuvudv.定積分的分部積分公式推導??,vuvuuv???????,)(babauvdxuv?????,??????bababadxvudxvu
2025-05-11 04:24
【摘要】高等數(shù)學電子教案第6章定積分及其應用定積分起源于求圖形的面積和體積等實際問題。微積分是一種數(shù)學思想,“無限細分”就是微分,“無限求和”就是積分。無限就是極限,極限的思想是微積分的基礎?!盁o限細分,無限求和”的積分思想在古代就已經(jīng)萌牙.最早可以追溯到希臘由阿
2025-07-20 12:23
【摘要】1第八節(jié)定積分在幾何上的應用第六章定積分的應用建立積分模型的微元法求平面圖形的面積求空間立體的體積求平面曲線的弧長與曲率旋轉(zhuǎn)體的側(cè)面積小結思考題作業(yè)2究竟哪些量可用定積分來計算呢.首先討論這個問題.結合曲邊梯形面積的計算一、建立積分模型的微元法可知,用定積分
2025-04-29 06:12
【摘要】16-7定積分在經(jīng)濟學中的應用2總成本=固定成本+可變成本)(qC0C)(1qC平均成本(單位成本)=qqCC)(10?收益=價格×銷量,即R(Q)=PQ.利潤=總收益-總成本,即L(Q)=R(Q)-C(Q)
2025-05-15 07:07
【摘要】定積分的幾何應用?badxxf)(利用定積分解決實際問題的關鍵:建立定積分的式子,即找出被積函數(shù)和積分區(qū)間。建立定積分式子的方法:微元法(又稱元素法)定積分微元法的實質(zhì):對能夠用定積分解決的實際問題,尋找其被積函數(shù)和積分區(qū)間的方法。定積分的定義表達式:()bafxdx?01lim(
2024-12-08 09:19
【摘要】回顧曲邊梯形求面積的問題?=badxxfA)(一、問題的提出曲邊梯形由連續(xù)曲線)(xfy=)0)((?xf、x軸與兩條直線ax=、bx=所圍成。abxyo)(xfy=abxyo)(xfy=iinixfA?=?=?)(lim10??
2025-04-29 05:41
【摘要】第15講│定積分與微積分基本定理第15講定積分與微積分基本定理知識梳理第15講│知識梳理1.定積分的定義如果函數(shù)f(x)在區(qū)間[a,b]上連續(xù),用分點a=x0<x1<…<xi-1<xi<…<xn=b將區(qū)間[a,b]等分成
2024-11-11 06:00
【摘要】abxyo??A曲邊梯形由連續(xù)曲線實例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2025-07-22 11:11
【摘要】導數(shù)的應用知識與技能:1.利用導數(shù)研究函數(shù)的切線、單調(diào)性、極大(小)值以及函數(shù)在連續(xù)區(qū)間[a,b]上的最大(?。┲担?.利用導數(shù)求解一些實際問題的最大值和最小值。過程與方法:1.通過研究函數(shù)的切線、單調(diào)性、極大(小)值以及函數(shù)在連續(xù)區(qū)間[a,b]上的最大(小)值,
2024-11-12 16:44
【摘要】數(shù)學:第三章第三節(jié)《模擬方法--概率的應用》課件PPT(北師大版必修3)模擬方法--概率的應用問題:房間的紗窗破了一個小洞,隨機向紗窗投一粒小石子,估計小石子從小洞穿過的概率。試驗1:取一個矩形,在面積為四分之一的部分畫上陰影,隨機地向矩形中撒一把豆子(我們數(shù)100粒),統(tǒng)計落在陰影內(nèi)的豆
2024-11-12 19:04
【摘要】定積分的定義?考慮正弦函數(shù)sin(x)在?0,??區(qū)間上。?分割.將?0,??區(qū)間等分,比如說20份。?近似.將每個小區(qū)間上的面積用矩形的面積來近似。?積分和(黎曼和).將所有小矩形面積求和,得到整體面積的一個近似。?求極限.讓等分的份數(shù)趨近于無窮大,所得極限就是所求面積的精確值。分
2025-07-18 21:56
【摘要】定積分習題課一、主要內(nèi)容問題1:曲邊梯形的面積問題2:變速直線運動的路程定積分存在定理廣義積分定積分的性質(zhì)牛頓-萊布尼茨公式)()()(aFbFdxxfba???定積分的計算法二、內(nèi)容提要1定積分的
2025-01-08 13:49