【摘要】勾股定理單元復習一、知識要點:1、勾股定理勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。也就是說:如果直角三角形的兩直角邊為a、b,斜邊為c,那么a2+b2=c2。公式的變形:a2=c2-b2,b2=c2-a2。2、勾股定理的逆定理如果三角形ABC的三邊長分別是a,b,c,且滿足a2+b2=c2,那么三角形ABC是直角三角形。這個定理叫
2025-04-16 23:53
【摘要】復習引入等腰三角形有哪些特征呢?ABC,(簡稱“在同一個三角形中,等邊對等角”);、底邊上的中線和底邊上的高互相重合。(簡稱“三線合一”),對稱軸是頂角平分線所在的直線(或是底邊的中垂線)。1、在△ABC中,AC=BC,∠B=800,則∠C=2、等腰三角形的一個內(nèi)角是10
2024-11-30 00:19
【摘要】探索勾股定理(第1課時)一、情境引入會標中央的圖案是趙爽弦圖,它與“勾股定理”有關(guān),數(shù)學家曾建議用“勾股定理”的圖來作為與“外星人”聯(lián)系的信號.2021年世界數(shù)學家大會在我國北京召開,下圖是本屆數(shù)學家大會的會標:探究活動一:觀察下面地板磚示意圖:二、探索發(fā)現(xiàn)勾股定理
2024-12-08 10:53
【摘要】(第3課時)《勾股定理證明方法匯總》課前自主探究活動方法種類及歷史背景驗證定理的具體過程知識運用及思想方法探究報告具體的做法是:請各個學習小組從網(wǎng)絡(luò)或書籍上,盡可能多地尋找和了解驗證勾股定理的方法.驗證過程的分析與欣賞第一種類型:以趙
2024-11-30 08:15
【摘要】(第2課時)?股定理,請問勾股定理的內(nèi)容是什么?據(jù)不完全統(tǒng)計,驗證的方法有400多種,你想得到自己的方法嗎?小組活動:請你利用自己準備的四個全等的直角三角形拼出以斜邊為邊長的正方形.有不同的拼法嗎?
2024-11-30 08:34
【摘要】勾股定理逆定理鐵山學校張宏財?一、教材分析?二、教學過程?三、說教法、學法與教學手段?四、教學反思一、教材分析?(一)本節(jié)課在教材的地位與作用?本節(jié)課是勾股定理的逆定理。它是在學過勾股定理的基礎(chǔ)上進行的。教科書以古埃及人的作圖為出發(fā)點,讓學生畫出一些兩邊的平方和
2024-11-22 01:51
【摘要】整式的乘法復習(二)知識回顧:乘法公式:22()()ababab????222()2abaabb????因式分解:()mambmcmabc?????22()()ababab????2222()aabbab????基礎(chǔ)練習:1、若
2024-11-10 02:13
【摘要】不等式的定義:一般地,用符號“”、“≥”連接的式子叫做不等式不等式的解集可在數(shù)軸上直觀表示。規(guī)律:大于向箭頭,小于向箭尾,有等號(≤、≥)畫實心點,無等號(<、>=畫空心圈。列不等式注意找到問題中不等關(guān)系的詞正數(shù)
2024-11-06 18:14
【摘要】直角三角形有哪些性質(zhì)?(1)有一個角是直角;(2)兩個銳角的和為90°(互余);(3)兩直角邊的平方和等于斜邊的平方;反之,一個三角形滿足什么條件,才能是直角三角形呢?回顧思考:(1)有一個角是直角的三角形是直角三角形;(2)有兩個角的和是90
2024-12-01 01:23
【摘要】勾股定理及其逆定理專題復習,5,x為邊組成直角三角形,則x應(yīng)滿足()A. B. C. D.圖(3)A10064:3,其差為2㎝,則三角形的周長是( )㎝ ㎝ ㎝ ㎝(3),正方形A的面積為()A.6B.36C.64D.84.若線段a,b,c組成Rt△,則它們的比為( ?。〢、2∶
【摘要】有理數(shù)的加減法加法法則:復習:同號兩數(shù)相加,取相同的符號,并把絕對值相加;若a0,b0,,則a+b=+若a0,b0,且,則a
2024-10-18 16:11
【摘要】基本概念。,它的國際單位是108千米/小時=米/秒,1米/秒=千米/小時的,在判斷物體是否運動時,要先選擇一個。
2024-11-07 02:30
【摘要】THANKS
2025-03-12 15:34
【摘要】勾股定理的逆定理第1課時勾股定理的逆定理滬科版·八年級數(shù)學下冊狀元成才路狀元成才路新課導入勾股定理如果直角三角形兩直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2.提問如果將條件和結(jié)論反過來,這個命題還成立嗎?狀元成才路
2025-03-13 03:09
【摘要】2直角三角形第1課時勾股定理及其逆定理北師版八年級數(shù)學下冊新課導入我們學過直角三角形的哪些性質(zhì)和判定方法?與同伴交流.ABC想一想新課探究(1)直角三角形的兩個銳角有怎樣的關(guān)系?為什么?(2)如果一個三角形有兩個角互余,那么這個三角形是直角
2025-03-12 21:17