【正文】
4,4,3} ( 2)關(guān)系圖為 3)因?yàn)?1,1,2,2,3,3,4,4均屬于 R,即 A 的每個(gè)元素構(gòu)成的有序?qū)?R 中,故 R 在 A 上是自反的。 5.在平面 G =〈 V, E〉中,則 ??ri ir1 )deg(= 2|E| ,其中 ir ( i=1, 2,?, r)是 G的面。 6.若集合 A={1, {2}, {1, 2}},則下列表述正確的是 ( {1}?A ). 7.已知一棵無(wú)向樹(shù) T 中有 8 個(gè)頂點(diǎn), 4 度、 3 度、 2 度的分支點(diǎn)各一個(gè), T 的樹(shù)葉數(shù)為 ( 5 ). 8.設(shè)無(wú)向圖 G 的鄰接矩陣為????????????????0101110011000011100111110則 G 的邊數(shù)為 ( 7 ). 9.設(shè)集合 A={a},則 A 的冪集為 ({?, {a}} ). 10.下列公式中 (?A??B ? ?(A?B) )為永真式. 11.若 G 是一個(gè)漢密爾頓圖,則 G 一定是 ( 連通圖 ). 12.集合 A={1, 2, 3, 4}上的關(guān)系 R={x, y|x=y 且 x, y?A},則 R 的性質(zhì)為(傳遞的 ). 13.設(shè)集合 A={1, 2, 3, 4, 5},偏序關(guān)系 ?是 A 上的整除關(guān)系,則偏序集 A, ?上的元素 5 是集合 A 的(極大元 ). 14.圖 G 如圖一所示,以下說(shuō)法正確的是 ( {(a, d) ,(b, d)}是邊割集 ) . 圖一 15.設(shè) A( x): x 是人, B( x): x 是工人,則命題“有人是工人”可符號(hào)化為( (? x)(A(x)∧ B(x)) ). 16.若集合 A={1, 2}, B={1, 2, {1, 2}},則下列表述正確的是 (A?B,且 A?B ). 17.設(shè)有向圖( a)、( b)、( c)與( d)如圖一所示 , 則下列結(jié)論成立的是 ( ( d)是強(qiáng)連通的 ). 18.設(shè)圖 G 的鄰接矩陣為????????????????0101010010000011100100110則 G 的邊數(shù)為 ( 5 ). 19.無(wú)向簡(jiǎn)單圖 G 是棵樹(shù),當(dāng)且僅當(dāng) (G 連通且邊數(shù)比結(jié)點(diǎn)數(shù)少 1 ). 20.下列公式 ((P?(?Q?P))?(?P?(P?Q)) )為重言式. 21.若集合 A= { a, {a}, {1, 2}},則下列表述正確的是 ({a}?A). 22.設(shè)圖 G= V, E, v?V, 則下列結(jié)論成立的是 ( EvVv 2)deg( ??? ) . 23.命題公式( P∨ Q)→ R 的析取范式是 (( ?P∧ ?Q)∨ R ) 24.下列等價(jià)公式成立的為 (P?(?Q?P) ??P?(P?Q) ). 25.設(shè) A={a, b}, B={1, 2}, R1, R2, R3是 A 到 B 的二元關(guān)系,且 R1={a, 2, b, 2}, R2={a, 1, a, 2, b, 1}, R3={a, 1, b, 2},則( R2 )不是從 A 到 B 的函數(shù). 26.設(shè) A={1, 2, 3, 4, 5, 6, 7, 8}, R 是 A 上的整除關(guān)系, B={2, 4, 6},則集合 B 的最大元、最小元、上界、下界依次為 (無(wú)、 無(wú)、 2). 2 / 11 27.若集合 A 的元素個(gè)數(shù)為 10,則其冪集的元素個(gè)數(shù)為( 1024). 28.如圖一所示,以下說(shuō)法正確的是 (e 是割點(diǎn) ). 圖一 29.設(shè)完全圖 Kn 有 n 個(gè)結(jié)點(diǎn) (n≥ 2), m 條邊,當(dāng)( n 為奇數(shù) )時(shí), Kn 中存在歐拉回路. 30.已知圖 G 的鄰接矩陣為 ,則 G 有( 5 點(diǎn), 7 邊 ). 二、填空題(每小題 3 分,共 15分) 1.設(shè) A, B為任意命題公式, C為重言式,若 A ? C? B? C,那么 A? B 是 重言 式(重言式、矛盾式或可滿(mǎn)足式)。 2.表達(dá)式 ? x( P( x, y) ? Q( z)) ? ? y( Q( x, y)→ ? zQ( z))中 ? x 的轄域是( P( x, y) Q( z) )。 R: a + b 是偶數(shù),則命題“若 a 是偶數(shù), b 是偶數(shù),則 a + b 也是偶數(shù)”符號(hào)化為( D. P Q→ R)。 5.設(shè) G 是連通平面圖,有 v 個(gè)結(jié)點(diǎn), e 條邊, r 個(gè)面,則 r=( ev+2)。 4.設(shè)圖 G =〈 V, E〉, G ′ =〈 V′, E′〉,若 V′ =V,E′ E ,則 G′是 G的生成子圖。 正確, R1和 R2,是自反 的, ?x∈ A,x,x∈ R1,x,x∈ R2,則 x,x ∈ R1∩ R2,所以 R1∩ R2是自反的 . 12. 如圖二所示的圖中存在一條歐拉回路 . 圖二 正確,因?yàn)閳D G 為連通的,且其中每個(gè)頂點(diǎn)的度數(shù)為偶數(shù)。 ?x 量詞的轄域?yàn)?(A(x,y)∧ ? zB(x,y, z)), ? z 量詞的轄域?yàn)?B(x,y,z), ? y 量詞的轄域?yàn)?C(y,z) (2)指出該公式的自由變?cè)图s束變?cè)?. 自由變?cè)獮?(A(x,y) ∧ ? zB(x,y, z))中的 y,以及 C(y,z)中的 z. 約束變?cè)獮?(A(x,y) ∧ ? zB(x,y, z))中的 x 與 B(x,y,z)中的 z,以及 C(y,z)中的 y。 (3)對(duì) A 中任意元 a、 b 和 c,有 a*b*c= a*c。 (3)由 (a*c)*(a*b*c)= (a*c*a)*(b*c)= a*(b*c)= (a*b)*c= (a*b)*(c*a*c)= (a*b*c)*(a*c),所以有 a*b*c= a*c。 證明: {P→ Q, R→ S, P∨ R}蘊(yùn)涵 Q∨ S (1) P∨ R P (2) ?R→ P Q(1) (3) P→ Q P (4) ?R→ Q Q(2)(3) (5) ?Q→ R Q(4) (6) R→ S P (7) ?Q→ S Q(5)(6) (8) Q∨ S Q(7) : {?A∨ B, ?C→ ?B, C→ D}蘊(yùn)涵 A→ D。s recall these colorful images that brought the country great joy. Calabash Brothers Calabash Brothers (Chinese: 葫蘆娃 ) is a Chinese animation TV series produced by Shanghai Animation Film Studio. In the 1980s the series was one of the most popular animations in China. It was released at a point when the Chinese animation industry was in a relatively downed state pared to the rest of the international munity. Still, the series was translated into 7 different languages. The episodes were produced with a vast amount of papercut animations. Black Cat Detective Black Cat Detective (Chinese: 黑貓警長(zhǎng) ) is a Chinese animation television series produced by the Shanghai Animation Film Studio. It is sometimes known as Mr. Black. The series was originally aired from 1984 to 1987. In June 2021, a rebroadcasting of the original series was announced. Critics bemoan the series39。t want to steal food like other mice. Shuke became a pilot and Beita became a tank driver, and the pair met accidentally and became good friends. Then they befriended a boy named Pipilu. With the help of PiPilu, they cofounded an airline named Shuke Beita Airlines to help other animals. Although there are only 13 episodes in this series, the content is very pact and attractive. The animation shows the preciousness of friendship and how people should be brave when facing difficulties. Even adults recalling this animation today can still feel touched by some scenes. Secrets of the Heavenly Book Secrets of the Heavenly Book, (Chinese: 天書(shū)奇談 ) also referred to as Legend of the Sealed Book or Tales about the Heavenly Book, was released in 1983. The film was produced with rigorous dubbing and fluid bination of music and vivid animations. The story is based on the classic literature Ping Yao Zhuan, meaning The Suppression of the Demons by Feng Menglong. Yuangong, the deacon, opened the shrine and exposed the holy book to the human world. He carved the book39。s feud with Nezha over his so