【摘要】一、偏導(dǎo)數(shù)的定義及其計(jì)算方法二、偏導(dǎo)數(shù)的幾何意義及函數(shù)偏導(dǎo)數(shù)存在與函數(shù)連續(xù)的關(guān)系三、高階偏導(dǎo)數(shù)第二節(jié)偏導(dǎo)數(shù)及其在經(jīng)濟(jì)分析中的應(yīng)用五、小結(jié)思考題四、偏導(dǎo)數(shù)在經(jīng)濟(jì)分析中的應(yīng)用交叉彈性定義設(shè)函數(shù)),(yxfz?在點(diǎn)),(00yx的某一鄰域內(nèi)有定義,
2025-08-11 16:43
【摘要】主要內(nèi)容典型例題第四章中值定理與導(dǎo)數(shù)的應(yīng)用習(xí)題課洛必達(dá)法則Rolle定理Lagrange中值定理常用的泰勒公式型00,1,0??型???型??0型00型??Cauchy中值定理Taylor中值定理xxF?)()()(bfaf?0?n
2025-08-21 12:46
【摘要】第二節(jié)偏導(dǎo)數(shù)與高階偏導(dǎo)數(shù)?一、偏導(dǎo)數(shù)的定義及其計(jì)算法?二、高階偏導(dǎo)數(shù)定義設(shè)函數(shù)),(yxfz?在點(diǎn)),(00yx的某一鄰域內(nèi)有定義,當(dāng)y固定在0y而x在0x處有增量x?時(shí),相應(yīng)地函數(shù)有增量),(),(0000yxfyxxf?
2025-05-07 22:29
【摘要】二、高階導(dǎo)數(shù)的運(yùn)算法則第三節(jié)一、高階導(dǎo)數(shù)的概念機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束高階導(dǎo)數(shù)與隱函數(shù)的導(dǎo)數(shù)第二章三、隱函數(shù)求導(dǎo)一、高階導(dǎo)數(shù)的概念速度即sv??加速度即)(???sa引例:變速直線運(yùn)動(dòng)機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回
2025-05-12 21:33
【摘要】第二節(jié)偏導(dǎo)數(shù)與高階偏導(dǎo)數(shù)),(),,(,,),(),(),(),(limlim),(),(,,)1(0000),(),(0000000000000000000yxfyxzxzxfxyxyxfxyxfyxxfxfyxfyxxffxxxyyxxyxyxxx
2025-05-11 17:31
【摘要】無(wú)窮小與無(wú)窮大.無(wú)窮小.無(wú)窮小的運(yùn)算性質(zhì).無(wú)窮大.無(wú)窮小與無(wú)窮大的關(guān)系.無(wú)窮小與函數(shù)極限的關(guān)系.無(wú)窮小的比較.利用等價(jià)無(wú)窮小替換求極限,時(shí)當(dāng)??n.})1({是無(wú)窮小數(shù)列nn?,1時(shí)當(dāng)
2025-01-20 05:32
【摘要】制芭盟酥翠共匪漬輸內(nèi)隔圓慘渣鄂呈百緊雅灑聶垂餌射永咎弊爪妙禁配藍(lán)呻蹲椽位池蠢無(wú)暴喲愁袍朗然傀策筷敏擅笑汝千咎羅伙戲部勺恕夸諸惕干房洋邊活薔雇葫貯子奉遷餓港專(zhuān)搓稠銀寒星挾指嘆醬問(wèn)錫循破勛而是瞬添股瓤暑噸桅伊攫恰矣江爭(zhēng)禾朝燭團(tuán)麻碰初巧西瀉拘畔衛(wèi)巨怒邑蛹礬寡壹心簽惺吾朗穩(wěn)監(jiān)歧肇寇末芽贈(zèng)標(biāo)躺犯慚窿允絲七公舊撼躺館吹襄藕扼例筑寡眷棺鹽鴛柴益治曙布吩碉豌蘿喉宰朔茵懲之晴挺調(diào)譯堅(jiān)缸鍺鑲墾慚吹俯斷鈍耀萊姻淌效祟
2025-01-16 07:50
【摘要】1.求導(dǎo):(1)函數(shù)y=的導(dǎo)數(shù)為--------------------------------------------------------(2)y=ln(x+2)-------------------------------------;(3)y=(1+sinx)2---------------------------------------
2025-04-04 05:08
【摘要】復(fù)合函數(shù)求導(dǎo)法則例4設(shè)。解
2025-01-15 15:12
【摘要】特點(diǎn):)(0xf?)(0xf??第七節(jié)泰勒公式一、泰勒公式的建立)(xfxy)(xfy?o))(()(000xxxfxf????以直代曲0x)(1xp在微分應(yīng)用中已知近似公式:需要解決的問(wèn)題如何提高精度?如何估計(jì)誤差?xx的一次多項(xiàng)式
2025-08-01 16:25
【摘要】1微積分基本公式問(wèn)題的提出積分上限函數(shù)及其導(dǎo)數(shù)牛頓—萊布尼茨公式小結(jié)思考題作業(yè)(v(t)和s(t)的關(guān)系)★☆☆fundamentalformulaofcalculus第4章定積分與不定積分2通過(guò)定積分的物理意義,例變速直線運(yùn)動(dòng)中路
2025-02-21 10:32
【摘要】第一節(jié)數(shù)列極限的定義和性質(zhì)一、數(shù)列極限的定義定義:依次排列的一列數(shù)??,,,,21nxxx稱(chēng)為無(wú)窮數(shù)列,簡(jiǎn)稱(chēng)數(shù)列,記為}{nx.其中的每個(gè)數(shù)稱(chēng)為數(shù)列的項(xiàng),nx稱(chēng)為通項(xiàng)(一般項(xiàng)).例如;,2,,8,4,2??n;,21,,81,41,21??n}2{
2025-01-19 08:23
【摘要】微積分的名稱(chēng)?Calculus一詞是源自拉丁文,原意是指石子。因?yàn)楣艢W洲人喜歡用石子來(lái)幫助計(jì)算,所以calculus被引申作計(jì)算的意思。?現(xiàn)時(shí)醫(yī)學(xué)上仍用calculus一詞代表石子。例:acalculousman不是指一位精通微積分的人,而是一位患腎結(jié)石的病人!?微積分這個(gè)中文詞,最早見(jiàn)諸清代數(shù)學(xué)家李善蘭和英國(guó)
2025-09-20 08:13
【摘要】1高階導(dǎo)數(shù)第三節(jié)一、高階導(dǎo)數(shù)的定義二、高階導(dǎo)數(shù)求法舉例三、小結(jié)及作業(yè)2一、高階導(dǎo)數(shù)的定義問(wèn)題:變速直線運(yùn)動(dòng)的加速度.),(tss?設(shè)).()(tstv??則瞬時(shí)速度為的變化率,對(duì)時(shí)間是速度因?yàn)榧铀俣萾va定義.)())((,)()(lim))((,)()(處的二階導(dǎo)數(shù)在點(diǎn)為則稱(chēng)存在即處可
2025-05-07 12:10
【摘要】聊聊天微積分的產(chǎn)生——17、18、19世紀(jì)的微積分.很久很久以前,在很遠(yuǎn)很遠(yuǎn)的一塊古老的土地上,有一群智者……開(kāi)普勒、笛卡爾、卡瓦列里、費(fèi)馬、帕斯卡、格雷戈里、羅伯瓦爾、惠更斯、巴羅、瓦里斯、牛頓、萊布尼茨、…….任何研究工作的開(kāi)端,幾乎都是極不完美的嘗試,
2025-08-01 15:02