【正文】
煅燒溫度 (℃) PH值 煅燒時(shí)間( h) 1 40 1 500 4 2 50 1 500 4 3 60 1 500 4 設(shè)置 3 個(gè)不同 PH 值的實(shí)驗(yàn) PH 值分別為 、 、 ,具體實(shí)驗(yàn)條件如表 34: 陳化反應(yīng) 烘干、研磨均勻 煅燒 表 34 不同 PH 值的試驗(yàn) 試驗(yàn)編號(hào) 水浴溫度 (℃) 水熱時(shí)間( h) 煅燒溫度 (℃) PH值 煅燒時(shí)間( h) 4 50 1 500 4 5 50 1 500 4 6 50 1 500 4 設(shè)置 3 個(gè)不同水熱時(shí)間的實(shí)驗(yàn) 水熱時(shí)間分別為 1h、 3h、 5h ,具體實(shí)驗(yàn)條件如表 35: 表 35 不同水熱時(shí)間的試驗(yàn) 試驗(yàn)編號(hào) 水浴溫度 (℃) 水熱時(shí)間( h) 煅燒溫度 (℃) PH值 煅燒時(shí)間( h) 7 50 1 500 4 8 50 3 500 4 9 50 5 500 4 設(shè)置 3 個(gè)不同煅燒溫度的實(shí)驗(yàn) 煅燒溫度分別為 400℃、 500℃、 600℃ ,具體實(shí)驗(yàn)條件如表 36: 表 36 不同煅燒溫度的試驗(yàn) 試驗(yàn)編號(hào) 水浴溫度 (℃) 水熱時(shí)間( h) 煅燒溫度 (℃) PH值 煅燒時(shí)間( h) 10 50 1 500 4 11 50 1 400 4 12 50 1 600 4 晶體結(jié)構(gòu)的分析 (XRD) X 射線衍射 (XRD)是一種非破壞性的測(cè)定晶體結(jié)構(gòu)的有效手段。本試驗(yàn)通過其衍射圖樣分析了制備的粉體的物相分析,并通過衍 射峰值討論了其不同的條件下的結(jié)晶性,并且可以通過謝樂公式 Dc = /(B cos θ)計(jì)算其平均顆粒大小。當(dāng)高速電子照射到固體樣品表面時(shí),就可以發(fā)生相互作用,產(chǎn)生一次電子的彈性散射、二次電子等信息。 第四章 結(jié)果與分析 晶體結(jié)構(gòu)分析 不同 煅燒溫度 對(duì)晶體結(jié)構(gòu)的影響 按照試驗(yàn)工藝步驟, 水浴 反應(yīng)溫度為 50℃ , 水浴加熱時(shí)間為 1h, 終點(diǎn) ph值為 ,煅燒 時(shí)間 為 4h,控制變量為 煅燒溫度 ,在不同 煅燒溫度 400℃、 500℃、600℃ 下制得樣品 對(duì)應(yīng) 如下: TO1 TO5(樣品 TO5 與樣品 TO10 反應(yīng)條件完全相同,故用 TO5 替代)、 TO12。 對(duì)樣品進(jìn)行了表征,結(jié)果整理如圖 4 4 43 所示,為 不同 煅燒溫度納米二氧化鈦 樣品的 XRD 圖 譜 。010 020 030 040 050 060 070 0Intensity(Counts)[ z hao x unn a T O 12 . ra w ] 472 1 1 2 7 2 A n a t a s e T i O 2 圖 43 煅燒溫度為 600℃條件下制備樣品 TO12 的 XRD 衍射圖譜 從以上圖中可以看出 ,不同煅燒溫度條件下制備的納米二氧化鈦微粉試樣的主要的強(qiáng)峰均為 Anatase-銳鈦礦( 101) ,證明在溶液 PH 值為 , 400~600℃煅 燒時(shí)的產(chǎn)物晶體結(jié)構(gòu)為純銳鈦型,此溫度段制備的銳鈦礦型純度非常高。 圖 34 是不同煅燒溫度條件下制備的二氧化鈦樣品的 XRD 圖譜。、 176。、 176。、 176。 大約在 600 攝氏度時(shí),衍射峰變得尖銳,此時(shí)樣品的晶化已經(jīng)相當(dāng)完全,晶型轉(zhuǎn)變基本完成。用 德國(guó)布魯克 D8 系列 X 射線(粉末)衍射儀 , 用一步為 176。 Anatase(101)Anatase(103) Anatase(004)Anatase(112)Anatase(200)Anatase(105)Anatase(211)Anatase(213)Anatase(204)Anatase(116)Anatase(220)Anatase(215)Anatase(301)10 20 30 40 50 60 70 802 T h e t a ( 176。010 020 030 040 050 0Intensity(Counts)[ z hao x unn aT O 4. ra w ] 4 7[ z hao x unn aT O 5. ra w ] 4 7[ z hao x unn aT O 6. ra w ] 1 2038 6 1 1 5 7 A n a t a s e T i 0 . 7 2 O 2( d )( e )( f ) 圖 38 不同 PH 值溶液制備樣品的 XRD 衍射圖譜 ( d) 、( e) 、( f) 圖 38 是不同 PH 值溶液制備的二氧化鈦樣品的 XRD 圖譜。 說明隨煅燒溫度的升高 ,晶體發(fā)育趨于完好 ,結(jié)晶度提高。 致謝 本 論 文 的工作 是在朱協(xié)彬 院長(zhǎng) 的悉心指導(dǎo)下完成的。當(dāng)時(shí)朱院長(zhǎng)的認(rèn)真、負(fù)責(zé)、孜孜不倦的科研及教學(xué)精神給予了我極大的精神支持及工作動(dòng)力。 同時(shí)還要感謝實(shí)驗(yàn)過程中陶峰博士、陳志浩博士、劉明朗老師及陳偉、張孟、陳靜等幾位研究生的幫助和指導(dǎo)!并且感謝銀橋科貿(mào)有限公司對(duì)我們?cè)囼?yàn)原材料的支持!謝謝你們! 附錄 A 外文文獻(xiàn)及翻譯 Effect of pH on TiO2 nanoparticles via sol gel method Siti Aida Ibrahim, and Srimala Sreekantan Abstract― A series of titania nanoparticles was successfully synthesized via sol gel method using titanium tetraisopropoxide as a precursor. In this paper, data concerning the effect of pH towards the development of TiO2 nanoparticles is reported. The samples were characterised by xray diffraction (XRD) and Scanning Electron Microscopy (SEM). XRD results showed the existence of nanocrystalline anatase phases with crystallite size ranging from 714 nm. Surface morphological studies obtain from SEM micrograph showed the particles with rodlike shape are rutile while the spherical shapes are anatase in nature. It was also found the pH of the solution affect the agglomeration of the particles. Results of photocatalytic studies exhibits that titania powder prepared at pH 9 has an excellent photocatalytic activity with degradation % within 60 minutes. Keywords: TiO2 nanoparticles, sol gel, photocatalytic Ⅰ INTRODUCTION ITANIA ( TiO2) nanoparticles is a promising materials and widely used in many applications due to its high photocatalytic activity [1,2] , excellent gassensitive properties [3] and dielectric properties [4]. Crystalline titania has three modification phases which are rutile (tetragonal, P42 /mnm), anatase (tetragonal, I41/amd) and brookite (orthorhombic, Pcab). Anatasetype TiO2 has excellent photocatalytic activity and widely used as catalysts for deposition of a wide variety of anic and inanic pollutants. Many methods have been established for titania synthesis such as solgel technique [58], hydrothermal method [5,9], chemical vapor deposition [10] , direct oxidation and others. Among them, the solgel technique is one of the most used methods due to its possibility of deriving unique metastable structure at low reaction temperatures and excellent chemical homogeinity. In sol gel processes, TiO2 is usually prepared by the reactions of hydrolysis and polycondensation of titanium alkoxide, (TiOR)n to form oxopolymers, which are transformed into anoxide work. These reactions can be schematically represented as follows: Hydrolysis: M(OR)n+H2O→M(OR) n1(OH)+ROH (1) Condensation Dehydration: M(OR)n+M(OR)n1→M 2O(OR)2n2+ROH (2) Dealcoholation: 2M(OR)n1(OH) →M 2O(OR)2n2+H2O (3) the overall reaction is M(OR)n+H2O→MO n/2+nROH (4) where M= Si, Ti, Zr, etc and R = alkyl group. The relative rates of hydrolysis and polycondensation strongly affected the structure and properties of metal oxides. Factors that crucial in the formation of metal oxides includes reactivity of metal alkoxides, water to alkoxides ratio, pH of reaction medium, nature of solvent and additives and reaction temperature. By varying these process parameters, materials with different surface chemistry and microstructure can be obtained. Typically, in sol gel method, the solgel derived precipitates are amorphous in nature. Therefore, it is require for further heat treatment to induce crystallization. To induce transition from amorphous to anatase phase, generally an annealing temperature higher than 300 176。 by step scanning mode with the step size of