freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

范德瓦爾斯力的產(chǎn)生機理及其計算畢業(yè)論文-預(yù)覽頁

2025-09-26 20:49 上一頁面

下一頁面
 

【正文】 : ? ? ? ? ? ? ???????? trEtrdRU iii ,21 ????? () 這里 δ 指減去自能項 , d 與 E 均包含自發(fā)項與誘導(dǎo)項之和 。 如圖 所示 , 除 圖中形式 (A)早已被文獻 [25]指出的情形外 , 利用對稱條件 (), 由 (), (), ()式很容易求出 : ? ? 321 2, RdtzE za ?? , ? ? ? ?62 02 RRU a ????? (式 ) 這就得到了通常結(jié)果 [25], 稱為縱向一維色散作用能 。 這里我們來進行一下簡單的分析 。 (注意此時色散能是與 R 的七次方成反比的 )與標(biāo)準(zhǔn)的三維情形相比較 [26], 可以發(fā)現(xiàn)三維情形是一維情形的 倍 , 而不再是 倍 (至于其它的情形 , 可以完全類似地得到 )。 對于 圖中形式 (A)情形 , 由 (), (), ()式容易得到 : 圖 二維色散作用示意圖 31 3 R ddE za?? ?? ; ? ? ? ????????? 0851 26 ???RRU a (式 ) 稱為縱向二維色散作用能 。 西安文理學(xué)院本科畢業(yè)設(shè)計(論文) 第 16 頁 結(jié)束語 經(jīng)過兩個多月的努力,范德瓦爾斯力的產(chǎn)生機理及其計算終于完成。 西安文理學(xué)院本科畢業(yè)設(shè)計(論文) 第 17 頁 致謝 本課題的研究探討以及論文撰寫一直都是在張相武老師的細(xì)心指導(dǎo)下進行的,可以說其中的每個環(huán)節(jié)都傾注了 張相武老師的智慧和心血,尤其是在督促完成論文工作上比其他老師做得都好,另外,在校圖書館查找資料的時候,圖書館的老師也給我提供了很多方面的支持與幫助。 由于我的學(xué)術(shù)水平有限,所寫論文難免有不足之處,懇請各位老師和學(xué)友批評和指正 ! 西安文理學(xué)院本科畢業(yè)設(shè)計(論文) 第 18 頁 參考文獻 [1]孫家踵 ,蔣棣成 ,周木易 .范德華引力問題Ⅲ — 離子間的相互作用能 [J].吉林大學(xué)自然科學(xué)學(xué)報 ,1959,2:117129. [2]孫家踵 ,蔣棣成 ,殷繼祖 ,周木易 .范德華引力問題 Ⅳ — 離子間的誘導(dǎo)力 [J].吉林大學(xué)自然科學(xué)學(xué)報 ,1959,2:131136. [3]孫家踵 ,蔣棣成 ,周木易 .范德華引力問題Ⅴ — 晶體中的三離子作用能和誘導(dǎo)作用能[J].吉林大學(xué)自然科學(xué)學(xué)報 ,1960,1:5768. [4]孫家踵 ,蔣棣成 .非對稱螺旋分子的范德瓦耳斯引力問題 [J].物理學(xué)報 ,1961,12(17): 559568. [5]李淑民 .分子間力與物質(zhì)的一些性質(zhì) [J].化學(xué)通報 ,1958,1:525529. [6]曹治覺 ,何憲才 .關(guān)于范德瓦爾斯方程對應(yīng)的分子力作用模型的修正問題 [J].大學(xué)物理 ,1998,17 (2):1819. [7]張 瑩 ,侯新杰 ,許海波 .關(guān)于范德瓦爾斯方程修正項的新探索 [J].河南師范大學(xué) 學(xué)報 ,(3): 3234. [8]何景瓷 .試論范德瓦爾斯氣體 [J].廣西物理 ,2020,02:3435. [9]曾錫之 .范德瓦爾斯分子 K39 Xe129中的自旋 — 轉(zhuǎn)動對自 旋交換耦合常數(shù)之比的確定[J].物理通報 ,1985,34 (10 ):12491260. [10]黃春暉 .固體中的范德瓦爾斯相互作用研究與應(yīng)用 .寧德師專學(xué)報 [J],2020,23(1): 7578. [11]劉建科 ,解 晨 ,楊若欣 ,李洋 .分子結(jié)合的物理本質(zhì)探究 [J].陜西科技大學(xué)學(xué)報 ,2020, 30(4):121124. [12]張國忠 ,汪昌岱 .無極分子之間的色散力 [J].北京聯(lián)合大學(xué)學(xué)報 ,1994,8(17):2427. [13]王稼國 ,荊西平 .弱共價相互作用 [J].大學(xué)化學(xué) ,2020,27(4):8389. [14]韓汝珊 .凝聚態(tài)物理從頭計算的最新進展 [J].物理 ,2020,39(11):753764. [15]劉維儉 .化學(xué)鍵和分子間力的共性 — 電性吸引 [J].常州教育學(xué)院 ,1995,4:5760. [16]夏澤吉 .關(guān)于范德華力本質(zhì)的定量探索 [J].川東學(xué)刊 (自然科學(xué)版 ),1997,7(2):8184. [17]Chen M K. Dispersion coefficients for 1,21s and 23s helium dimers[J].J Phys B, 1995, 28:4189. [18]Brandt E H,Mints R G,Shapiro I fluctuationinduced attraction of vortices to the surface in layered superconductors[J]. Phys Rev Lett,1996,76:827. [19]Millonni P W,Smith der Waals dispersion force in electromagic fields[J]. Phys Rev A,1996,53:3484. 西安文理學(xué)院本科畢業(yè)設(shè)計(論文) 第 19 頁 [20]Sandoghdar V, Sukenik C I, Hinds E measurement of the Van der Waals interaction between an atom and it’s images in a micronsized cavity[J].Phys Rev Lett,1992,68:3234. [21]Barash Y S, Ginzburgh V problems in the theory of Van der Waals forces[J]. Sov Phys Vps,1984,7:27. [22]朗道 ,栗弗席茲 .統(tǒng)計物理學(xué) [M].北京 :高等教育出版社 ,. [23]Berestetskii V B,Lifshitz E M,Pitaevskii L Electrodynamics[M].Oxford, Pergamon Press,. [24]方俊鑫 ,陸棟 .固體物理學(xué) [M].上海 :上海科學(xué)出版社 ,. [25]周英彥 ,溫清庚 ,趙寶明 .色散作用能的推導(dǎo) [J].大學(xué)物理 ,1998,17(3):811. [26]Mostepanenko V M,Trunov N Casimir effect and its applications[J].Sov Phys Vsp,1998,31:965970. 西安文理學(xué)院本科畢業(yè)設(shè)計(論文) 第 20 頁 附 錄 附錄 A:英文原文 Dispersion Forces within the Framework of Macroscopic QED Christian Raabe and DirkGunnar Welsch Abstract. Dispersion forces, which material objects in the ground state are subject to, originate from the Lorentz force with which the fluctuating, objectassisted electromagic vacuum acts on the fluctuating charge and currentdensities associated with the objects. We calculate them within the framework of macroscopic QED, considering magodielectric objects described in terms of spatially varying permittivities and permeabilities which are plex functions of frequency. The result enables us to give a unified approach to dispersion forces on both macroscopic and microscopic levels. Keywords: dispersion forces, Lorentzforce approach, QED in linear causal media 1. Introduction As known, electromagic fields can exert forces on electrically neutral, unpolarized and unmagized material objects, provided that these are polarizable and/or magizable. Classically, it is the lack of precise knowledge of the state of the sources of a field what lets one resort to a probabilistic description of the field, so that, as a matter of principle, a classical field can be nonfluctuating. In practice, this would be the case when the sources, and thus the field, were under strict deterministic control. In quantum mechanics, the situation is quite different, as field fluctuations are present even if plete knowledge of the quantum state would be achieved。,w) is the classical (retarded) Green tensor (in the frequency domain) for the electric field, which takes the presence of the macroscopic bodies into account. It can then be argued that, in order to obtain the CP potential Ua(rA) as the positiondependent part of the energy shift, one may replace G(rA,rA,w) in Eq. (1) with G(S)(rA,rA,w), where G(S)(r,r39。,w) corresponds to the prescribed medium. In Eqs. (12) and (13), it is assumed that the medium covers the entire space so that solutions of the homogeneous Maxwell equations do not appear. Freespace regions can be introduced by performing the limits E ~ 1 and JL ~1, but not before the end of the actual calculations. Because of the polarization and/or magization currents attributed to the medium, the total charge and current densities are given by where As we have not yet specified the current density IN(r) in any way, the above formulas are generally valid so far, and they are valid both in classical and in quantum electrodynamics, In any case, it is clear that knowledge of the correlation function (IN(r,w)l~(r39。,w39。,w39。~ r must be understood in such a way that divergent selfforces, 西安文理學(xué)院本科畢業(yè)設(shè)計(論文) 第 24 頁 which would be formally present even in a uniform (bulk) medium, are omitted. The force on the matter in a volurne Vf\,l is then given by the volume integral which can be rewritten as the surface integral where T(r) is (the expectation value of) Maxwell39
點擊復(fù)制文檔內(nèi)容
高考資料相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1