【摘要】線性代數(shù)習(xí)題和答案第一部分選擇題(共28分)一、單項(xiàng)選擇題(本大題共14小題,每小題2分,共28分)在每小題列出的四個(gè)選項(xiàng)中只有一個(gè)是符合題目要求的,請(qǐng)將其代碼填在題后的括號(hào)內(nèi)。錯(cuò)選或未選均無(wú)分。=m,=n,則行列式等于()A.m+n B.-(m+n)C.n-m D.m-n=,則A-1等于(
2025-06-28 20:44
【摘要】第一篇:線性代數(shù)復(fù)習(xí)要點(diǎn) “線性代數(shù)”主要題型(以第三版的編號(hào)為準(zhǔn)) (注意:本復(fù)習(xí)要點(diǎn)所涉及的題目與考試無(wú)關(guān)) 一、具體內(nèi)容 第一章、行列式: 、四階或者五階行列式的計(jì)算。 3、例4,第...
2024-10-17 18:50
【摘要】第一篇:線性代數(shù)概念總結(jié) 每一個(gè)m×n矩陣總可經(jīng)過有限次初等行變換化成行階梯陣與行簡(jiǎn)化階梯陣,且行階梯陣中的非零行數(shù)是唯一確定的,行簡(jiǎn)化階梯陣也是唯一確定的。 初等矩陣都是可逆的。且初等矩陣的逆矩...
2024-11-05 02:09
【摘要】第一篇:線性代數(shù)習(xí)題答案 習(xí)題三(A類) =(1,1,0),α2=(0,1,1),α3=(3,4,0).求α1-α2及3α1+:α1-α2=(1,1,0)-(0,1,1)=(1,0,-1),3α1...
2024-11-09 22:39
【摘要】第一篇:線性代數(shù)習(xí)題答案 、=2,s=5,t=8或r=5,s=8,t=2或r=8,s=2,t==2,j=;a13a25a32a44a51;;當(dāng)k為偶數(shù)時(shí),排列為偶排列,當(dāng)k為奇數(shù)時(shí),(1)1;(2)...
2024-11-09 12:06
【摘要】(試卷一)一、填空題(本題總計(jì)20分,每小題2分)1.排列7623451的逆序數(shù)是。2.若,則3.已知階矩陣、和滿足,其中為階單位矩陣,則。4.若為矩陣,則非齊次線性方程組有唯一解的充分要條件是_________5.設(shè)為的矩陣,已知它的秩為4,則以為系數(shù)矩陣的齊次線性方程組的解空間維數(shù)為__2___________。6.設(shè)A為
2025-06-28 20:17
【摘要】 成績(jī)西安交通大學(xué)城市學(xué)院考試卷課程線性代數(shù)類別班號(hào)考試日期2010年6月3日姓名學(xué)號(hào)期中期末一、填空題(每小題2分,共20分).
2025-03-25 07:05
【摘要】專門收集歷年試卷第一部分選擇題(共28分)一、單項(xiàng)選擇題(本大題共14小題,每小題2分,共28分)在每小題列出的四個(gè)選項(xiàng)中只有一個(gè)是符合題目要求的,請(qǐng)將其代碼填在題后的括號(hào)內(nèi)。錯(cuò)選或未選均無(wú)分。=m,=n,則行列式等于()A.m+n B.-(m+n)C.n-m D.m-n=,則A-1等于()A. B.
2025-06-21 23:03
【摘要】《線性代數(shù)》期末試題A第一部分選擇題一單項(xiàng)選擇題(本大題共20小題,每小題2分,共40分)在每小題列出的四個(gè)備選項(xiàng)中只有一個(gè)是符合題目要求的,請(qǐng)將其代碼填寫在題后的括號(hào)內(nèi)。錯(cuò)選、多選或未選均無(wú)分。1.設(shè)行列式2211baba=1,2211caca=2,則22211
2025-01-09 16:18
【摘要】1第一章行列式:(1)381141102???;(2)bacacbcba(3)222111cbacba;(4)yxyxxyxyyxyx???.解(1)????381141102
2025-01-09 10:35
【摘要】1、行列式1.行列式共有個(gè)元素,展開后有項(xiàng),可分解為行列式;2.代數(shù)余子式的性質(zhì):①、和的大小無(wú)關(guān);②、某行(列)的元素乘以其它行(列)元素的代數(shù)余子式為0;③、某行(列)的元素乘以該行(列)元素的代數(shù)余子式為;3.代數(shù)余子式和余子式的關(guān)系:4.設(shè)行列式:將上、下翻轉(zhuǎn)或左右翻轉(zhuǎn),所得行列式為,則;將順時(shí)針或逆時(shí)針旋轉(zhuǎn),所得行列式為,則;將主對(duì)角線翻
2025-07-24 13:45
【摘要】第一章行列式1.利用對(duì)角線法則計(jì)算下列三階行列式:(1);解=2′(-4)′3+0′(-1)′(-1)+1′1′8-0′1′3-2′(-1)′8-1′(-4)′(-1)
2025-06-28 21:04
【摘要】第三節(jié)逆矩陣,111????aaaa,11EAAAA????則矩陣稱為的可逆矩陣或逆陣.A1?A一、概念的引入在數(shù)的運(yùn)算中,當(dāng)數(shù)時(shí),0?a有aa11??a其中為的倒數(shù),a(或稱的逆);在矩陣的運(yùn)算中,E
2024-10-04 19:42
【摘要】第二章矩陣及其運(yùn)算?矩陣的概念?矩陣的運(yùn)算?逆矩陣?矩陣分塊法第一節(jié)線性方程組和矩陣?矩陣概念的引入(線性方程組)?矩陣的定義?小結(jié)、思考題???????????????????nnnnnnnnnnbxaxaxabxaxaxabxaxaxa
2025-08-05 10:13
【摘要】線性代數(shù)復(fù)習(xí).課程重點(diǎn):解線性方程組★(1)行列式(2)矩陣(3)矩陣初等變換與矩陣的秩(4)向量(5)方陣的相似對(duì)角化(6)二次型nn???解個(gè)方程個(gè)未知量的線性方程組mn???解個(gè)方程個(gè)未知量的線性方程組解線性方程組判斷線性方程
2025-02-19 06:24