【摘要】第3章數(shù)系的擴(kuò)充與復(fù)數(shù)的引入§數(shù)系的擴(kuò)充課時目標(biāo)i的必要性,了解數(shù)集的擴(kuò)充過程.中由實(shí)數(shù)集擴(kuò)展到復(fù)數(shù)集出現(xiàn)的一些基本概念.,理解復(fù)數(shù)相等的充要條件.1.復(fù)數(shù)的有關(guān)概念(1)虛數(shù)單位把平方等于-1的數(shù)用符號i表示,規(guī)定__________,i叫作虛數(shù)單位.(2
2024-12-05 09:28
【摘要】演繹推理推理案例賞析雙基達(dá)標(biāo)?限時20分鐘?1.“因?qū)?shù)函數(shù)y=logax是增函數(shù)(大前提),而y=log13x是對數(shù)函數(shù)(小前提),所以y=log13x是增函數(shù)(結(jié)論).”上面推理的錯誤是________.答案大前提錯導(dǎo)致結(jié)論錯2.下面幾種推理過程是演繹推理的是________
【摘要】習(xí)題課一、基礎(chǔ)過關(guān)1.函數(shù)f(x)=12ex(sinx+cosx)在區(qū)間????0,π2上的值域?yàn)開_______.2.函數(shù)y=f(x)的圖象如下圖所示,則導(dǎo)函數(shù)y=f′(x)的圖象可能是________.(填序號)3.使y=sinx+ax在R上是增函數(shù)的a的取值范圍為_______
2024-12-05 06:24
【摘要】習(xí)題課一、基礎(chǔ)過關(guān)1.已知a≥0,b≥0,且a+b=2,則下列結(jié)論正確的是________.①a≤12②ab≥12③a2+b2≥2④a2+b2≤32.下面四個不等式:①a2+b2+c2≥ab+bc+ac;②a(1-a)≤14;③ba+ab≥2;④
【摘要】山東省泰安市肥城市第三中學(xué)高中數(shù)學(xué)教案定積分及其應(yīng)用學(xué)案新人教A版選修2-2學(xué)習(xí)內(nèi)容學(xué)習(xí)指導(dǎo)即時感悟?qū)W習(xí)目標(biāo):1.了解定積分的實(shí)際背景,了解定積分的基本思想,了解定積分的概念。2.了解微積分基本定理。3.加強(qiáng)數(shù)形結(jié)合,化歸思想的應(yīng)用。學(xué)習(xí)重點(diǎn):定積分的幾何意義、基本性質(zhì)、微積分基本定理
2024-11-19 17:30
【摘要】定積分的概念:在直角坐標(biāo)系中,由連續(xù)曲線y=f(x),直線x=a、x=b及x軸所圍成的圖形叫做曲邊梯形。Oxyaby=f(x)一.求曲邊梯形的面積x=ax=b因此,我們可以用這條直線L來代替點(diǎn)P附近的曲線,也就是說:在點(diǎn)P附近,曲線可以看作直線(即在很小范圍內(nèi)
2024-11-17 12:01
【摘要】1曲邊梯形面積與定積分2::"",特定形式和的極限且都可以歸結(jié)為求一個、取極限得到解決,分割、近似代替、求和四步曲它們都可以通過的過程可以發(fā)現(xiàn)變速直線運(yùn)動路程從曲邊梯形面積以及求????;ξfn1limxΔξflimSin1inn1ii0xΔ???????
2024-11-18 01:21
【摘要】1.微積分基本定理一、基礎(chǔ)過關(guān)1.若F′(x)=x2,則F(x)的解析式正確的是______.①F(x)=13x3②F(x)=x3③F(x)=13x3+1④F(x)=13x3+c(c為常數(shù))2.設(shè)f(x)=?????x+1?x≤1?,12x2?x1?,則?
【摘要】§導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用一、基礎(chǔ)過關(guān)1.煉油廠某分廠將原油精煉為汽油,需對原油進(jìn)行冷卻和加熱,如果第x小時,原油溫度(單位:℃)為f(x)=13x3-x2+8(0≤x≤5),那么,原油溫度的瞬時變化率的最小值是________.2.設(shè)底為等邊三角形的直三棱柱的體積為V,那么其表面積最小時底面邊長為_
【摘要】§導(dǎo)數(shù)的運(yùn)算§常見函數(shù)的導(dǎo)數(shù)目的要求:(1)了解求函數(shù)的導(dǎo)數(shù)的流程圖,會求函數(shù)的導(dǎo)函數(shù)(2)掌握基本初等函數(shù)的運(yùn)算法則教學(xué)內(nèi)容一.回顧函數(shù)在某點(diǎn)處的導(dǎo)數(shù)、導(dǎo)函數(shù)思考:求函數(shù)導(dǎo)函數(shù)的流程圖新授;求下列函數(shù)的導(dǎo)數(shù)(1)ykx
2024-11-20 00:29
【摘要】1.函數(shù)的和、差、積、商的導(dǎo)數(shù)一、基礎(chǔ)過關(guān)1.下列結(jié)論不正確的是________.(填序號)①若y=3,則y′=0;②若f(x)=3x+1,則f′(1)=3;③若y=-x+x,則y′=-12x+1;④若y=sinx+cosx,則y′=cosx+si
2024-12-05 06:25
【摘要】第2章推理與證明§合情推理與演繹推理2.合情推理(一)一、基礎(chǔ)過關(guān)1.?dāng)?shù)列5,9,17,33,x,…中的x等于________2.f(n)=1+12+13+…+1n(n∈N*),計算得f(2)=32,f(4)2,f(8)52,f(16)3,f(32)
【摘要】1.最大值與最小值一、基礎(chǔ)過關(guān)1.函數(shù)f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分別是________,________.2.f(x)=x3-3x2+2在區(qū)間[-1,1]上的最大值是________.3.函數(shù)y=lnxx的最大值為________.4.函數(shù)f(x)=xex的最
【摘要】1.瞬時變化率——導(dǎo)數(shù)(二)一、基礎(chǔ)過關(guān)1.下列說法正確的是________(填序號).①若f′(x0)不存在,則曲線y=f(x)在點(diǎn)(x0,f(x0))處就沒有切線;②若曲線y=f(x)在點(diǎn)(x0,f(x0))處有切線,則f′(x0)必存在;③若f′(x0)不存在,則曲線y=f(
【摘要】§數(shù)學(xué)歸納法(二)一、基礎(chǔ)過關(guān)1.用數(shù)學(xué)歸納法證明等式1+2+3+?+(n+3)=?n+3??n+4?2(n∈N*),驗(yàn)證n=1時,左邊應(yīng)取的項是________.2.用數(shù)學(xué)歸納法證明“2nn2+1對于n≥n0的自然數(shù)n都成立”時,第一步證明中的起始值n0應(yīng)取___
2024-12-04 23:42