【摘要】1.導(dǎo)數(shù)的概念1.知道函數(shù)的瞬時變化率的概念,理解導(dǎo)數(shù)的概念.2.能利用導(dǎo)數(shù)的定義求函數(shù)的導(dǎo)數(shù).本節(jié)重點:導(dǎo)數(shù)的定義.本節(jié)難點:用導(dǎo)數(shù)的定義求函數(shù)的導(dǎo)數(shù).對導(dǎo)數(shù)的定義要注意:第一:Δx是自變量x在x0處的改變量,所以Δx可正可負,但Δx≠
2024-11-17 23:15
【摘要】1.了解復(fù)合函數(shù)的定義,并能寫出簡單函數(shù)的復(fù)合過程;2.掌握復(fù)合函數(shù)的求導(dǎo)方法,并運用求導(dǎo)方法求簡單的復(fù)合函數(shù)的導(dǎo)數(shù).本節(jié)重點:①導(dǎo)數(shù)公式和導(dǎo)數(shù)運算法則的應(yīng)用.②復(fù)合函數(shù)的導(dǎo)數(shù).本節(jié)難點:復(fù)合函數(shù)的求導(dǎo)方法.復(fù)合函數(shù)的概念一般地,對于兩個函數(shù)y=f(u)和
2024-11-17 17:04
【摘要】定積分雙基達標(biāo)?限時20分鐘?1.S1=??012xdx,S2=??013xdx的大小關(guān)系是().A.S1=S2B.S21=S2C.S1>S2D.S1<S2解析??012xdx表示的是由曲線y=2x,x=0,x=1及x軸所圍成的圖形面積,而??0
2024-12-03 00:13
【摘要】命題【學(xué)習(xí)目標(biāo)】1.理解什么是命題,會判斷一個命題的真假.2.分清命題的條件和結(jié)論,能將命題寫成“若p,則q”的形式.【自主學(xué)習(xí)】研讀教材,回答下列問題::.從命題定義中可以看出,命題具備的兩個基本條件是:
2024-11-19 23:25
【摘要】§1.2.2組合教學(xué)目標(biāo):知識與技能:理解組合的意義,能寫出一些簡單問題的所有組合。明確組合與排列的聯(lián)系與區(qū)別,能判斷一個問題是排列問題還是組合問題。過程與方法:了解組合數(shù)的意義,理解排列數(shù)mn?與組合數(shù)之間的聯(lián)系,掌握組合數(shù)公式,能運用組合數(shù)公式進行計算。情感、態(tài)度與價值觀:能運用組合要領(lǐng)分析簡單的實際問題,提
2024-12-05 06:39
【摘要】理解類比推理概念,能利用類比推理的方法進行簡單的推理,體會并認(rèn)識合情推理在數(shù)學(xué)發(fā)現(xiàn)中的作用.本節(jié)重點:類比推理.本節(jié)難點:類比推理的特點及應(yīng)用.1.類比推理由兩類對象具有某些特征和其中一類對象的某些,推出另一類對象也具有這些特征的推理稱為類比推理(簡稱類比).簡言之,類比推理是由到
2024-11-17 23:20
【摘要】數(shù)學(xué)選修2-2導(dǎo)數(shù)及其應(yīng)用知識點必記1.函數(shù)的平均變化率為注1:其中是自變量的改變量,可正,可負,可零。注2:函數(shù)的平均變化率可以看作是物體運動的平均速度。2、導(dǎo)函數(shù)的概念:函數(shù)在處的瞬時變化率是,則稱函數(shù)在點處可導(dǎo),并把這個極限叫做在處的導(dǎo)數(shù),記作或,即=.;函數(shù)的導(dǎo)數(shù)的幾何意義是切線的斜率。4導(dǎo)數(shù)的背景(1)切線的斜率;(2)瞬時速度;(3)邊際成本。5、常見的函
2025-06-07 05:44
【摘要】利用導(dǎo)數(shù)我們解決了“已知物體運動路程與時間的關(guān)系,求物體運動速度”的問題.引入反之,如果已知物體的速度與時間的關(guān)系,如何求其在一定時間內(nèi)經(jīng)過的路程呢?汽車行駛的路程問題:汽車以速度v做勻速直線運動時,經(jīng)過時間t所行駛的路程為Svt?.如果汽車作變速直線運動,在時刻t的速
2024-11-17 12:01
【摘要】1.基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的運算法則1.熟記基本初等函數(shù)的導(dǎo)數(shù)公式,理解導(dǎo)數(shù)的四則運算法則.2.能利用導(dǎo)數(shù)的四則運算法則和導(dǎo)數(shù)公式,求簡單函數(shù)的導(dǎo)數(shù).本節(jié)重點:導(dǎo)數(shù)公式和導(dǎo)數(shù)的運算法則及其應(yīng)用.本節(jié)難點:導(dǎo)數(shù)公式和運算法則的應(yīng)用.1.基本初等函數(shù)的導(dǎo)數(shù)公式
2024-11-17 19:03
【摘要】云南省曲靖市麒麟?yún)^(qū)第七中學(xué)高中數(shù)學(xué)線面垂直學(xué)案新人教A版必修2【學(xué)習(xí)目標(biāo)】1.了解直線與平面垂直的定義;2.理解并掌握直線與平面垂直的判定;3.會求直線與平面所成角?!緦W(xué)習(xí)重點】直線與平面垂直的判定、直線與平面所成角。【學(xué)習(xí)難點】定義既體現(xiàn)判定又體現(xiàn)性質(zhì)、空間角到平面角的轉(zhuǎn)化思想。【問題導(dǎo)學(xué)】
2024-12-05 06:43
【摘要】云南省曲靖市麒麟?yún)^(qū)第七中學(xué)高中數(shù)學(xué)面面垂直學(xué)案新人教A版必修2【學(xué)習(xí)目標(biāo)】了解平面與平面垂直的定義;理解并掌握平面與平面垂直的判定;3.會求二面角?!緦W(xué)習(xí)重點】平面與平面垂直的判定、平面與平面所成的二面角?!緦W(xué)習(xí)難點】定義既體現(xiàn)判定又體現(xiàn)性質(zhì)、空間角到平面角的轉(zhuǎn)化思想?!締栴}導(dǎo)學(xué)】
【摘要】1.導(dǎo)數(shù)的幾何意義理解導(dǎo)數(shù)的幾何意義,會求曲線的切線方程.本節(jié)重點:導(dǎo)數(shù)的幾何意義及曲線的切線方程.本節(jié)難點:求曲線在某點處的切線方程.1.深刻理解“函數(shù)在一點處的導(dǎo)數(shù)”、“導(dǎo)函數(shù)”、“導(dǎo)數(shù)”的區(qū)別與聯(lián)系(1)函數(shù)在一點處的導(dǎo)數(shù)f′(x0)是
【摘要】選修2-21.1變化率與導(dǎo)數(shù)1.變化率問題1.通過實例了解平均變化率的概念.2.會求一些簡單函數(shù)的平均變化率.本節(jié)重點:函數(shù)的平均變化率的概念.本節(jié)難點:函數(shù)平均變化率的求法.1.Δx是自變量x在x0處的改變量,它可以為正,也可以為負,但不能等于零,而
【摘要】1.3導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用1.函數(shù)的單調(diào)性與導(dǎo)數(shù)借助于函數(shù)的圖象了解函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會用導(dǎo)數(shù)法求函數(shù)的單調(diào)區(qū)間.本節(jié)重點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.本節(jié)難點:用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的步驟.1.函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)的單調(diào)性與
【摘要】1.函數(shù)的最大(小)值與導(dǎo)數(shù)1.理解函數(shù)最值的概念及閉區(qū)間上函數(shù)存在最值的定理.2.掌握用導(dǎo)數(shù)求閉區(qū)間上函數(shù)最大值和最小值的方法.本節(jié)重點:函數(shù)在閉區(qū)間上最值的概念與求法.本節(jié)難點:極值與最值的區(qū)別與聯(lián)系,求最值的方法.極值與最值的區(qū)別和聯(lián)系(1)函數(shù)的極值表示函數(shù)