【摘要】數(shù)量積運(yùn)算一、兩個(gè)向量的夾角兩條相交直線(xiàn)的夾角是指這兩條直線(xiàn)所成的銳角或直角,即取值范圍是(0°,90°],而向量的夾角可以是鈍角,其取值范圍是[0°,180°]二、兩個(gè)向量的數(shù)量積注:①兩個(gè)向量的數(shù)量積是數(shù)量,而不是向量.②規(guī)定:零向量與任意向量的數(shù)量積等于零.a
2025-11-09 12:14
【摘要】第一課時(shí)空間向量及其加減與數(shù)乘運(yùn)算教學(xué)要求:理解空間向量的概念,掌握其表示方法;會(huì)用圖形說(shuō)明空間向量加法、減法、數(shù)乘向量及它們的運(yùn)算律;能用空間向量的運(yùn)算意義及運(yùn)算律解決簡(jiǎn)單的立體幾何中的問(wèn)題.教學(xué)重點(diǎn):空間向量的加減與數(shù)乘運(yùn)算及運(yùn)算律.教學(xué)難點(diǎn):由平面向量類(lèi)比學(xué)習(xí)空間向量.教學(xué)過(guò)程:一、復(fù)習(xí)引入1、有關(guān)平面向量的一
2025-11-10 22:43
【摘要】數(shù)乘運(yùn)算上一節(jié)課,我們把平面向量的有關(guān)概念及加減運(yùn)算擴(kuò)展到了空間.平面向量空間向量加法減法運(yùn)算加法:三角形法則或平行四邊形法則減法:三角形法則運(yùn)算律加法交換律abba???加法結(jié)合律:()()ab
【摘要】第2課時(shí)函數(shù)的極值,會(huì)從幾何直觀理解函數(shù)的極值與導(dǎo)數(shù)的關(guān)系,并會(huì)靈活應(yīng)用..、參數(shù)取值范圍、判斷方程的根的個(gè)數(shù)等問(wèn)題.若函數(shù)f(x)的定義域?yàn)閰^(qū)間(a,b),導(dǎo)數(shù)f'(x)在(a,b)內(nèi)的圖像如圖所示,用極值的定義你能判斷函數(shù)f(x)在(a,b)內(nèi)的極小值點(diǎn)有幾個(gè)嗎?問(wèn)題
2025-11-10 23:14
【摘要】坐標(biāo)表示1.空間向量的基本定理:2.平面向量的坐標(biāo)表示及運(yùn)算律:(,,)pxiyjijxy??(1)若分別是軸上同方向的兩個(gè)單位向量(,)pxy則的坐標(biāo)為1212(,),(,)aaabbb??(2)若11221122(,)
【摘要】課題拋物線(xiàn)的簡(jiǎn)單性質(zhì)(一)學(xué)習(xí)目標(biāo),理解焦點(diǎn)弦的概念,理解拋物線(xiàn)性質(zhì)與標(biāo)準(zhǔn)方程的關(guān)系.,進(jìn)一步理解用代數(shù)方法研究幾何性質(zhì)的優(yōu)越性,感受坐標(biāo)法和數(shù)形結(jié)合的基本思想.,類(lèi)比拋物線(xiàn)的性質(zhì);由拋物線(xiàn)的方程研究性質(zhì),鞏固數(shù)形結(jié)合思想.學(xué)習(xí)重點(diǎn):拋物線(xiàn)的性質(zhì),理解拋物線(xiàn)性質(zhì)與標(biāo)準(zhǔn)方程的關(guān)系.學(xué)習(xí)難點(diǎn):
2025-11-09 18:59
【摘要】課題全稱(chēng)命題與特稱(chēng)命題的否定學(xué)習(xí)目標(biāo)..學(xué)習(xí)重難點(diǎn):正確地對(duì)命題進(jìn)行否定.學(xué)習(xí)方法:以講學(xué)稿為依托的探究式教學(xué)方法.學(xué)習(xí)過(guò)程(一)課前預(yù)習(xí)任務(wù):(閱讀教材13---14頁(yè)完成下面問(wèn)題)1.要說(shuō)明一個(gè)全稱(chēng)命題是錯(cuò)誤的,只需即可,
【摘要】課題拋物線(xiàn)及其標(biāo)準(zhǔn)方程(一)第一課時(shí)學(xué)習(xí)目標(biāo):、準(zhǔn)線(xiàn)的概念..,利用方程研究拋物線(xiàn),進(jìn)一步運(yùn)用坐標(biāo)法,提高“數(shù)學(xué)應(yīng)用”意識(shí).學(xué)習(xí)重點(diǎn):.會(huì)求簡(jiǎn)單的拋物線(xiàn)的方程.學(xué)習(xí)難點(diǎn):標(biāo)準(zhǔn)方程的推導(dǎo)學(xué)習(xí)方法:以講學(xué)稿為依托的探究式教學(xué)方法。學(xué)習(xí)過(guò)程一、課前預(yù)習(xí)指導(dǎo):1.橢圓的定義
【摘要】第4課時(shí)導(dǎo)數(shù)的四則運(yùn)算..你能利用導(dǎo)數(shù)的定義推導(dǎo)f(x)·g(x)的導(dǎo)數(shù)嗎?若能,請(qǐng)寫(xiě)出推導(dǎo)過(guò)程.問(wèn)題1:基本初等函數(shù)的導(dǎo)數(shù)公式表:①若f(x)=c,則f'(x)=;②若f(x)=xα(α∈Q),則f'(x)=;③若f(
【摘要】課題直線(xiàn)與圓錐曲線(xiàn)的交點(diǎn)學(xué)習(xí)目標(biāo):1.了解直線(xiàn)與圓錐曲線(xiàn)的三種位置關(guān)系.2.掌握求解直線(xiàn)與圓錐曲線(xiàn)有關(guān)問(wèn)題的方法.3.加強(qiáng)數(shù)形結(jié)合思想方法的訓(xùn)練與應(yīng)用.,是數(shù)形結(jié)合思想的應(yīng)用與體現(xiàn).學(xué)習(xí)重點(diǎn):求解直線(xiàn)與圓錐曲線(xiàn)有關(guān)問(wèn)題的方法學(xué)習(xí)難點(diǎn):圓錐曲線(xiàn)的弦長(zhǎng)問(wèn)題。學(xué)習(xí)方法:以講學(xué)稿為依托
2025-11-24 00:16
【摘要】第二章空間向量與立體幾何§1從平面向量到空間向量課程目標(biāo)學(xué)習(xí)脈絡(luò)1.經(jīng)歷從平面向量到空間向量的推廣過(guò)程.2.會(huì)說(shuō)出空間向量有關(guān)概念的含義.3.能指出直線(xiàn)的方向向量和平面的法向量.4.會(huì)用直線(xiàn)的方向向量和直線(xiàn)上一點(diǎn)確定直線(xiàn),會(huì)用法向量和點(diǎn)確定平面.一二一、向
2025-11-07 23:22
【摘要】北師大版高中數(shù)學(xué)選修2-1第二章《空間向量與立體幾何》扶風(fēng)縣法門(mén)高中姚連省第一課時(shí)平面向量知識(shí)復(fù)習(xí)一、教學(xué)目標(biāo):復(fù)習(xí)平面向量的基礎(chǔ)知識(shí),為學(xué)習(xí)空間向量作準(zhǔn)備二、教學(xué)重點(diǎn):平面向量的基礎(chǔ)知識(shí)。教學(xué)難點(diǎn):運(yùn)用向量知識(shí)解決具體問(wèn)題三、教學(xué)方法:探究歸納,講練結(jié)合四、教學(xué)過(guò)程(一)、基本概念
2025-11-29 09:07
【摘要】陜西省榆林育才中學(xué)高中數(shù)學(xué)第2章《平面向量》12向量應(yīng)用舉例(2)導(dǎo)學(xué)案北師大版必修4使用說(shuō)明1.課前根據(jù)學(xué)習(xí)目標(biāo),認(rèn)真閱讀課本內(nèi)容,完成預(yù)習(xí)引導(dǎo)的全部?jī)?nèi)容.,大膽展示,發(fā)揮學(xué)習(xí)小組的高效作用,完成合作探究部分.學(xué)習(xí)目標(biāo)1.經(jīng)歷用向量方法解決某些簡(jiǎn)單的平面幾何問(wèn)題、力學(xué)問(wèn)題與其他一些實(shí)際問(wèn)題的過(guò)程,體會(huì)向量是
2025-11-10 20:36
【摘要】重慶市萬(wàn)州分水中學(xué)高中數(shù)學(xué)選修2-1《空間向量的數(shù)量積》教案?jìng)湔n時(shí)間教學(xué)課題教時(shí)計(jì)劃1教學(xué)課時(shí)1教學(xué)目標(biāo)1.掌握空間向量的夾角的概念,掌握空間向量的數(shù)量積的概念、性質(zhì)和運(yùn)算律,了解空間向量數(shù)量積的幾何意義;2.掌握空間向量數(shù)量積的坐標(biāo)形式,會(huì)用向量的方法解決有關(guān)垂直、夾角和
2025-11-26 03:08
【摘要】第二章一、選擇題1.下列說(shuō)法中正確的是()A.任意兩個(gè)空間向量都可以比較大小B.方向不同的空間向量不能比較大小,但同向的空間向量可以比較大小C.空間向量的大小與方向有關(guān)D.空間向量的??梢员容^大小[答案]D[解析]任意兩個(gè)空間向量,不論同向還是不同向均不存在大小關(guān)系,故A、B不正確;
2025-11-21 11:35