【摘要】《導數(shù)在研究函數(shù)中的應(yīng)用-極值》教學目標?(1)知識目標:能探索并應(yīng)用函數(shù)的極值與導數(shù)的關(guān)系求函數(shù)極值,能由導數(shù)信息判斷函數(shù)極值的情況。?(2)能力目標:培養(yǎng)學生的觀察能力、歸納能力,增強數(shù)形結(jié)合的思維意識。?(3)情感目標:通過在教學過程中讓學生多動手、多觀察、勤思考、善總結(jié),引導學生養(yǎng)成自主學習的良好習慣。?教學
2024-11-18 12:13
【摘要】課題:瞬時變化率??導數(shù)教學目標:(1)什么是曲線上一點處的切線,如何作曲線上一點處的切線?如何求曲線上一點處的曲線?注意曲線未必只與曲線有一個交點。(2)了解以曲代直、無限逼近的思想和方法(3)瞬時速度與瞬時加速度的定義及求解方法。(4)導數(shù)的概念,其產(chǎn)生的背景,如何求函數(shù)在某點處的
2024-11-19 21:26
【摘要】極大值與極小值課時目標(小)值的概念.,了解函數(shù)在某點取得極值的必要條件和充分條件.、極小值.1.若函數(shù)y=f(x)在點x=a的函數(shù)值f(a)比它在點x=a附近其他點的函數(shù)值都小,f′(a)=0,而且在點x=a附近的左側(cè)________,右側(cè)________.類似地,函數(shù)y=f(
2024-12-05 09:29
【摘要】高二數(shù)學組徐瑞虹生活中經(jīng)常遇到求利潤最大、用料最省、效率最高等問題,這些問題通常稱為優(yōu)化問題.通過前面的學習,我們知道,導數(shù)是求函數(shù)最大(?。┲档膹娪辛ぞ撸@一節(jié),我們利用導數(shù),解決一些生活中的優(yōu)化問題.創(chuàng)設(shè)情景實例探究:學校舉行慶祝五一勞動節(jié)活動,需要張貼海報進行宣傳.現(xiàn)讓你設(shè)計一張如圖所示的豎向張貼的海報,要
【摘要】函數(shù)的極值與導數(shù)(a,b)內(nèi),如果,那么函數(shù)在這個區(qū)間內(nèi)單調(diào)遞增;如果,那么函數(shù)在這個區(qū)間內(nèi)單調(diào)遞減.0)(??xf)(xfy?0)(??xf)(xfy?2.對x∈(a,b),如果
【摘要】函數(shù)的最大(小)值與導數(shù)21、函數(shù)的極值設(shè)函數(shù)f(x)在點x0附近有定義,?如果對X0附近的所有點,都有f(x)f(x0),則f(x0)是函數(shù)f(x)的一個極小值,
2024-11-17 12:01
【摘要】§導數(shù)在研究函數(shù)中的應(yīng)用1.單調(diào)性課時目標掌握導數(shù)與函數(shù)單調(diào)性之間的關(guān)系,會利用導數(shù)研究函數(shù)的單調(diào)性,會求不超過三次的多項式函數(shù)的單調(diào)區(qū)間.1.導函數(shù)的符號與函數(shù)的單調(diào)性的關(guān)系:如果在某個區(qū)間內(nèi),函數(shù)y=f(x)的導數(shù)________,則函數(shù)y=f(x)這個區(qū)間上是增函數(shù);如果在某個區(qū)
【摘要】最大值與最小值教學目的:⒈使學生理解函數(shù)的最大值和最小值的概念,掌握可導函數(shù))(xf在閉區(qū)間??ba,上所有點(包括端點ba,)處的函數(shù)中的最大(或最小)值必有的充分條件;⒉使學生掌握用導數(shù)求函數(shù)的極值及最值的方法和步驟教學重點:利用導數(shù)求函數(shù)的最大值和最小值的方法.教學難點:函數(shù)的最大值、最小值與函數(shù)的極大值和
2024-11-20 00:26
【摘要】第4課時導數(shù)在實際問題中的應(yīng)用、用料最省、效率最高等優(yōu)化問題,體會導數(shù)在解決實際問題中的作用.,體會導數(shù)方法在研究函數(shù)性質(zhì)中的一般性和有效性.飲料瓶大小對飲料公司利潤有何影響?下圖是某種品牌飲料的三種規(guī)格不同的產(chǎn)品,它們的價格如下表所示:規(guī)格(L)2價格(元)
2024-12-05 06:34
【摘要】本課時欄目開關(guān)畫一畫研一研章末復(fù)習課本課時欄目開關(guān)畫一畫研一研章末復(fù)習課本課時欄目開關(guān)畫一畫研一研題型一分類討論思想的應(yīng)用例1設(shè)函數(shù)f(x)=2x3-3(a-1)x2+1,其中a
2024-11-17 23:13
【摘要】江蘇省漣水縣第一中學高中數(shù)學第三章第10課導數(shù)在實際生活中的應(yīng)用(1)教學案蘇教版選修1-1班級:高二()班姓名:____________教學目標:通過生活中優(yōu)化問題的學習,體會導數(shù)在解決實際問題中的作用,促進學生全面認識數(shù)學的科學價值、應(yīng)用價值和文化價值;通過實際問題的研究,促進學生分析問題、解決問題以及數(shù)
2024-11-23 01:03
【摘要】簡單復(fù)合函數(shù)的導數(shù)課時目標能求形如f(ax+b)形式的復(fù)合函數(shù)的導數(shù).[來源:Z|xx|k.Com]復(fù)合函數(shù)的概念一般地,對于兩個函數(shù)y=f(u)和u=g(x),如果通過變量u,y可以表示成x的函數(shù),那么稱這個函數(shù)為y=f(u)和u=g(x)的復(fù)合函數(shù),記作y=f(g(x)).
【摘要】1§函數(shù)的極值與導數(shù)學習目標、極小值,最大值和最小值的概念;、極小值的方法來求函數(shù)的極值;.和步驟.預(yù)習與反饋(預(yù)習教材P26~P31,找出疑惑之處)復(fù)習1:設(shè)函數(shù)y=f(x)在某個區(qū)間內(nèi)有導數(shù),如果在這個區(qū)間內(nèi)0y??,那么函數(shù)y=f(x)在這個區(qū)間內(nèi)為函
2024-11-20 03:14
【摘要】《生活中的優(yōu)化問題舉例》教學目標?掌握導數(shù)在生活中的優(yōu)化問題問題中的應(yīng)用?教學重點:?掌握導數(shù)生活中的優(yōu)化問題問題中的應(yīng)用.規(guī)格(L)2價格(元)問題背景:飲料瓶大小對飲料公司利潤的影響下面是某品牌飲料的三種規(guī)格不同的產(chǎn)品,若它們的價格如下表所示,則(
【摘要】??.,.,,.,問題解決一些生活中的優(yōu)化數(shù)本節(jié)我們運用導值的有力工具小導數(shù)是求函數(shù)最大我們知道習前面的學過通通常稱為這些問題最省、效率最高等問題最大、用料生活中經(jīng)常遇到求利潤優(yōu)化問題高汽油的使用效率何時最例1?????????""2?,1:,.vw,h/km:vL:w,