【摘要】§簡單復合函數(shù)的求導法則學習目標思維脈絡1.能說出復合函數(shù)的概念,記住復合函數(shù)的求導法則.2.會運用復合函數(shù)求導法則求一些復合函數(shù)的導數(shù).3.能把一個復合函數(shù)分成兩個或幾個簡單函數(shù)的和、差、積、商的形式.4.要明確復合函數(shù)y=f[g(x)]的導數(shù)和函數(shù)y=f(u),
2024-11-18 13:32
【摘要】復合函數(shù)的導數(shù)一、復習與引入:1.函數(shù)的導數(shù)的定義與幾何意義...y=(3x-2)2的導數(shù),那么我們可以把平方式展開,利用導數(shù)的四則運算法則求導.然后能否用其它的辦法求導呢?又如我們知道函數(shù)y=1/x2的導數(shù)是=-2/x3,那么函數(shù)y=1/(3x-2)2的導數(shù)又是什么呢?為了解決上面
2024-11-03 19:25
【摘要】?y=f(u),u=(x)?y=f((x))一般的可分解為y=sinu,u=(2x+3)課前復習復合函數(shù)可分解為y=sin(2x+3)?令u=(2x+3)則y=sinu所以復合函數(shù)可分解為:y
2025-05-14 23:10
【摘要】為常數(shù))????(x)x)(1(1'??1)a0,lna(aa)a)(2(x'x???且1)a,0a(xlna1elogx1)xlog)(3(a'a????且sinx(7)(cosx)'??e)e)(4(x'x?x
2025-10-02 20:05
【摘要】復合函數(shù)的求導法則在學習此法則之前我們先來看一個例子!例題:求=?解答:由于,故這個解答正確嗎?這個解答是錯誤的,正確的解答應該如下:我們發(fā)生錯誤的原因是是對自變量x求導,而不是對2x求導。下面我們給出復合函數(shù)的求導法則復合函數(shù)的求導規(guī)則
2025-08-13 13:15
【摘要】第四節(jié)一、隱函數(shù)求導法三、由參數(shù)方程確定的函數(shù)的導數(shù)五、相關(guān)變化率隱函數(shù)的求導法和參數(shù)方程確定的函數(shù)求導法第二章二、對數(shù)求導法四、由極坐標確定的函數(shù)的導數(shù)一、隱函數(shù)的導數(shù)定義:.)(形式稱為顯函數(shù)xfy?若由方程可確定y是x的函數(shù),此函數(shù)為由方程則稱
2025-07-25 09:35
【摘要】1.隱函數(shù)的導數(shù)隱函數(shù)即由方程0),(?yxF所確定的函數(shù)).(xfy?直接在方程0),(?yxF兩邊對x求導再解出,y?但應注意F對變元y求導時,要利用復合求導法則.2.對數(shù)求導法當函數(shù)式較復雜(含乘、除、乘方、開方、冪指函數(shù)等)時,在方程兩邊取對數(shù),按隱函數(shù)的求
2025-07-24 04:24
【摘要】西南民族大學經(jīng)濟學院毛瑞華微積分(2021~2021下)1§多元復合函數(shù)與隱函數(shù)微分法一、多元復合函數(shù)微分法定理設z=f(u,v)在(u,v)處可微,u=u(x,y),v=v(x,y)在(x,y)處的偏導數(shù)存在,則復合函數(shù)z=f[u(x,y),v(x,y)]在(x,y)處的偏導數(shù)
2025-10-10 14:52
【摘要】第18章隱函數(shù)定理及其應用§1隱函數(shù)一、隱函數(shù)概念.).sinsin(sin,1,22顯函數(shù)這種形式的函數(shù)稱為如式是自變量的某個算式若函數(shù)的因變量的表達zxyzxyeuyxzxyz??????.J,I)1((1),x,Jy,Ix,YJX
2025-06-17 06:29
【摘要】§隱函數(shù)與參量函數(shù)微分法一、隱函數(shù)的導數(shù)定義:由方程F(x,y)=0所確定的函數(shù)y=y(x)稱為隱函數(shù).y=f(x)形式的函數(shù)稱為顯函數(shù).如果從F(x,y)=0中解得y=f(x),稱為隱函數(shù)的顯化.問題:隱函數(shù)不易顯化或不能顯化如何求導?例1:求由方程xy–e
2025-07-24 17:10
【摘要】高階導數(shù)1、顯函數(shù)的高階導數(shù)(2-n階)2、隱函數(shù)和參數(shù)方程的2階導數(shù)一、顯函數(shù)高階導數(shù)的定義定義.)())((,)()(lim))((,)()(0處的二階導數(shù)在點為函數(shù)則稱存在即處可導在點的導數(shù)如果函數(shù)xxfxfxxfxxfxfxxfxfx??????????????記作
2025-05-13 06:01
【摘要】世紀文都教育科技集團股份有限公司2018考研數(shù)學中反函數(shù)求導問題來源:文都教育春風十里,不如考研的你,2018考研備考正在如火如荼地進行著,18的考生們的復習也漸漸步入正軌!今天文都考研數(shù)學老師針對2018考研數(shù)學中反函數(shù)求導問題,為大家進行詳細的解答,幫助2018年的考研學子把握復習備考的命題方向!一、反函數(shù)的導數(shù)
2025-06-07 22:26
【摘要】第四節(jié)一、隱函數(shù)的導數(shù)二、由參數(shù)方程確定的函數(shù)的導數(shù)機動目錄上頁下頁返回結(jié)束隱函數(shù)和參數(shù)方程求導第二章一、隱函數(shù)的導數(shù)若由方程可確定y是x的函數(shù),由表示的函數(shù),稱為顯函數(shù).例如,可確定顯函數(shù)可確定y是x的函數(shù),
2025-07-24 09:56
【摘要】第四節(jié)一、隱函數(shù)的導數(shù)二、由參數(shù)方程確定的函數(shù)的導數(shù)三、相關(guān)變化率機動目錄上頁下頁返回結(jié)束隱函數(shù)和參數(shù)方程求導相關(guān)變化率第二章一、隱函數(shù)的導數(shù)若由方程可確定y是x的函數(shù),由表示的函數(shù),稱為顯函數(shù).例如,可確定顯函數(shù)
2025-07-24 12:21
【摘要】第四節(jié)一、隱函數(shù)的導數(shù)二、由參數(shù)方程確定的函數(shù)的導數(shù)三、相關(guān)變化率隱函數(shù)和參數(shù)方程求導相關(guān)變化率第二章一、隱函數(shù)的導數(shù)若由方程可確定y是x的函數(shù),由表示的函數(shù),稱為顯函數(shù).例如,可確定顯函數(shù)可確定y是x的函數(shù),但此隱函數(shù)不能顯化.