【摘要】曲率是描述曲線局部性質(zhì)(彎曲程度)的量。1M3M2??2M2S?1S?MM?1S?2S?NN???弧段彎曲程度越大,轉(zhuǎn)角越大.轉(zhuǎn)角相同,弧段越短,彎曲程度越大一、平面曲線的曲率概念1??第十一節(jié)曲線的曲率??????S?S)?.M?.MC0Myxo.s
2025-04-21 04:19
【摘要】第四節(jié)一、隱函數(shù)的導(dǎo)數(shù)二、由參數(shù)方程確定的函數(shù)的導(dǎo)數(shù)三、相關(guān)變化率機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束隱函數(shù)和參數(shù)方程求導(dǎo)相關(guān)變化率第二章一、隱函數(shù)的導(dǎo)數(shù)若由方程可確定y是x的函數(shù),由表示的函數(shù),稱為顯函數(shù).例如,可確定顯函數(shù)
2025-07-24 09:57
【摘要】三角函數(shù)的微分法與二階導(dǎo)數(shù)14三角函數(shù)的微分法xxxcos)(sindd1?定理證明:xxxxxxx???????sin)sin(lim)(sindd0xxxxx?????????????2sin22cos2lim022sin
2025-07-26 12:09
【摘要】隱函數(shù)的求導(dǎo)公式DxyzOM?xyP),(yxfz?第7章多元函數(shù)微分法及其應(yīng)用隱函數(shù)的求導(dǎo)公式2二、全微分形式不變性具有連續(xù)偏導(dǎo)數(shù),則有全微分;dddvvzuuzz??????則有全微分yyzxxzzddd??????????
2024-08-14 19:08
【摘要】的函數(shù)的求導(dǎo)一、隱函數(shù)的導(dǎo)數(shù)二、由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)返回一、隱函數(shù)的導(dǎo)數(shù)定義:.),(稱為隱函數(shù)由方程所確定的函數(shù)0?yxF.)(形式稱為顯函數(shù)xfy?0),(?yxF)(xfy?隱函數(shù)的顯化問題:隱函數(shù)不易顯化或不能顯化如何求導(dǎo)?隱函數(shù)求導(dǎo)法則:用復(fù)合函數(shù)求導(dǎo)法則直接對(duì)方程兩
2025-07-21 12:40
【摘要】1第九章多元函數(shù)微分學(xué)(下)21、設(shè)空間曲線的方程)1()()()(????????tztytx???ozyx(1)式中的三個(gè)函數(shù)均可導(dǎo).第六節(jié)偏導(dǎo)數(shù)在幾何上的應(yīng)用M?.),,(0000tttzzyyxxM
2025-05-03 22:04
【摘要】目錄上頁(yè)下頁(yè)返回結(jié)束第四節(jié)一、隱函數(shù)的導(dǎo)數(shù)二、由參數(shù)方程確定的函數(shù)的導(dǎo)數(shù)三、相關(guān)變化率隱函數(shù)和參數(shù)方程求導(dǎo)相關(guān)變化率第二章目錄上頁(yè)下頁(yè)返回結(jié)束一、隱函數(shù)的導(dǎo)數(shù)若由方程可確定y是x的函數(shù),由表示的
2025-07-24 09:56
【摘要】為什么要規(guī)定a0,且a?1呢?①若a=0,則當(dāng)x0時(shí),xa=0;?0時(shí),xa無意義.當(dāng)x②若a
2025-02-21 12:07
【摘要】1第六章多元函數(shù)微分學(xué)DxyzOM?xyP),(yxfz?2偏導(dǎo)數(shù)與全微分復(fù)合函數(shù)與隱函數(shù)的微分法多元函數(shù)的連續(xù)性隱函數(shù)存在定理第六章多元函數(shù)微分學(xué)多元函數(shù)多元函數(shù)的極限方向?qū)?shù)與梯度多元函數(shù)的微分中值定理與泰勒公式極值問題3第一節(jié)、
2025-02-21 16:07
【摘要】主講教師:王升瑞高等數(shù)學(xué)第十四講2第三節(jié)一、隱函數(shù)的導(dǎo)數(shù)三、參數(shù)方程確定的函數(shù)的導(dǎo)數(shù)二、對(duì)數(shù)求導(dǎo)法隱函數(shù)與參數(shù)方程求導(dǎo)第二章3一、隱函數(shù)的導(dǎo)數(shù)若由方程可確定y是x的函數(shù),由表示的函數(shù),稱為顯函數(shù).
2025-07-24 08:52
【摘要】YunnanUniversity§2.不定積分的計(jì)算一、“湊”微分法例如:22(2)2xxeedxdx???求tx?2令dtdx21?.2121212CeCedtextt?????形式上“湊”成能由不定積分公式求出的積分!簡(jiǎn)單替換例1.)(1consta
2024-10-12 14:14
【摘要】第四節(jié)、隱函數(shù)的導(dǎo)數(shù)、由參數(shù)方程確定的函數(shù)的導(dǎo)數(shù)隱函數(shù)及由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)第二章、隱函數(shù)的導(dǎo)數(shù)若由方程可確定y是x的函數(shù),由表示的函數(shù),稱為顯函數(shù).例如,可確定顯函數(shù)可確定y是x的函數(shù),但此隱函數(shù)不能顯化.函數(shù)為隱函數(shù).則稱此
2025-07-24 04:26
【摘要】第三節(jié)二、高階導(dǎo)數(shù)的運(yùn)算法則一、高階導(dǎo)數(shù)的概念高階導(dǎo)數(shù)、隱函數(shù)及由參數(shù)方程所確定函數(shù)的導(dǎo)數(shù)三、隱函數(shù)的導(dǎo)數(shù)四、由參數(shù)方程確定的函數(shù)的導(dǎo)數(shù)一、高階導(dǎo)數(shù)的概念速度即加速度即引例:變速直線運(yùn)動(dòng)定義.若函數(shù)的導(dǎo)數(shù)可導(dǎo),或即或類似地,二階導(dǎo)數(shù)的導(dǎo)數(shù)稱為三階導(dǎo)數(shù),階導(dǎo)數(shù)的導(dǎo)數(shù)稱為n階導(dǎo)數(shù),
2025-04-30 18:03
【摘要】第七講不定積分的分布積分法/有理函數(shù)積分法1分部積分法2幾類特殊函數(shù)的不定積分問題???dxxex解決思路利用兩個(gè)函數(shù)乘積的求導(dǎo)法則.設(shè)函數(shù))(xuu?和)(xvv?具有連續(xù)導(dǎo)數(shù),??,vuvuuv???????,vuuvvu?????,dxvuuvdxvu??????.duvuvud
2024-08-14 10:21
【摘要】一、函數(shù)、極限、連續(xù)三、多元函數(shù)微分學(xué)二、導(dǎo)數(shù)與微分微分學(xué)四、微分學(xué)應(yīng)用一、一、函數(shù)、極限、連續(xù)函數(shù)、極限、連續(xù)1.一元函數(shù)顯函數(shù)定義域:使表達(dá)式有意義的實(shí)數(shù)全體或由實(shí)際意義確定。隱函數(shù)參數(shù)方程所表示的函數(shù)函數(shù)的特性函數(shù)的特性有界性,單調(diào)性,奇偶性,周期性復(fù)合函數(shù)(構(gòu)造新函數(shù)的重要方法)初等函數(shù)由
2025-02-08 19:47