freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

圓錐曲線習(xí)題精選精講-全文預(yù)覽

2024-08-28 03:29 上一頁面

下一頁面
  

【正文】 2-1得 即 設(shè)P1P2的中點(diǎn)為,則 又,而PA、M、P2共線 ,即 中點(diǎn)M的軌跡方程是解析幾何題怎么解 高考解析幾何試題一般共有4題(2個選擇題, 1個填空題, 1個解答題), 共計(jì)30分左右, 考查的知識點(diǎn)約為20個左右. 其命題一般緊扣課本, 突出重點(diǎn), 全面考查. 選擇題和填空題考查直線, 圓, 圓錐曲線, 參數(shù)方程和極坐標(biāo)系中的基礎(chǔ)知識. 解答題重點(diǎn)考查圓錐曲線中的重要知識點(diǎn), 通過知識的重組與鏈接, 使知識形成網(wǎng)絡(luò), 著重考查直線與圓錐曲線的位置關(guān)系, 求解有時還要用到平幾的基本知識,這點(diǎn)值得考生在復(fù)課時強(qiáng)化. 例1 已知點(diǎn)T是半圓O的直徑AB上一點(diǎn),AB=OT=t (0t1),以AB為直腰作直角梯形,使垂直且等于AT,使垂直且等于BT,交半圓于P、Q兩點(diǎn),建立如圖所示的直角坐標(biāo)系.(1)寫出直線的方程; (2)計(jì)算出點(diǎn)P、Q的坐標(biāo); (3)證明:由點(diǎn)P發(fā)出的光線,經(jīng)AB反射后,反射光線通過點(diǎn)Q. 講解: 通過讀圖, 看出點(diǎn)的坐標(biāo).(1 ) 顯然, 于是 直線的方程為;(2)由方程組解出; (3), . 由直線PT的斜率和直線QT的斜率互為相反數(shù)知,由點(diǎn)P發(fā)出的光線經(jīng)點(diǎn)T反射,反射光線通過點(diǎn)Q. 需要注意的是, Q點(diǎn)的坐標(biāo)本質(zhì)上是三角中的萬能公式, 有趣嗎?例2 已知直線l與橢圓有且僅有一個交點(diǎn)Q,且與x軸、y軸分別交于R、S,求以線段SR為對角線的矩形ORPS的一個頂點(diǎn)P的軌跡方程. 講解:從直線所處的位置, 設(shè)出直線的方程, 由已知,直線l不過橢圓的四個頂點(diǎn),所以設(shè)直線l的方程為代入橢圓方程 得 化簡后,得關(guān)于的一元二次方程 于是其判別式由已知,得△=0.即 ①在直線方程中,分別令y=0,x=0,求得 令頂點(diǎn)P的坐標(biāo)為(x,y), 由已知,得 代入①式并整理,得 , 即為所求頂點(diǎn)P的軌跡方程. 方程形似橢圓的標(biāo)準(zhǔn)方程, 你能畫出它的圖形嗎? 例3已知雙曲線的離心率,過的直線到原點(diǎn)的距離是 (1)求雙曲線的方程; (2)已知直線交雙曲線于不同的點(diǎn)C,D且C,D都在以B為圓心的圓上,求k的值. 講解:∵(1)原點(diǎn)到直線AB:的距離. 故所求雙曲線方程為 (2)把中消去y,整理得 . 設(shè)的中點(diǎn)是,則 即故所求k=177。所以靈活運(yùn)用曲線系是解析幾何中重要的解題方法和技巧之一。 解: 五. 應(yīng)用平面向量,簡化解題向量的坐標(biāo)形式與解析幾何有機(jī)融為一體,因此,平面向量成為解決解析幾何知識的有力工具。熟練的使用它,常能巧妙地解決許多貌似困難和麻煩的問題。 解析:如圖所示, 雙曲線離心率為2,F(xiàn)為右焦點(diǎn),由第二定律知即點(diǎn)P到準(zhǔn)線距離。熟記各種定義、基本公式、法則固然重要,但要做到迅速、準(zhǔn)確解題,還須掌握一些方法和技巧。(5) 給出以下情形之一:①;②存在實(shí)數(shù);③若存在實(shí)數(shù),等于已知三點(diǎn)共線.(6) 給出,等于已知是的定比分點(diǎn),為定比,即(7) 給出,等于已知,即是直角,給出,等于已知是鈍角, 給出,等于已知是銳角,(8)給出,等于已知是的平分線/(9)在平行四邊形中,給出,等于已知是菱形。(答:);(2)若點(diǎn)在圓上運(yùn)動,則點(diǎn)的軌跡方程是____(答:);(3)過拋物線的焦點(diǎn)F作直線交拋物線于A、B兩點(diǎn),則弦AB的中點(diǎn)M的軌跡方程是________(答:);注意:①如果問題中涉及到平面向量知識,那么應(yīng)從已知向量的特點(diǎn)出發(fā),考慮選擇向量的幾何形式進(jìn)行“摘帽子或脫靴子”轉(zhuǎn)化,還是選擇向量的代數(shù)形式進(jìn)行“摘帽子或脫靴子”轉(zhuǎn)化。如(1)如果橢圓弦被點(diǎn)A(4,2)平分,那么這條弦所在的直線方程是 (答:);(2)已知直線y=-x+1與橢圓相交于A、B兩點(diǎn),且線段AB的中點(diǎn)在直線L:x-2y=0上,則此橢圓的離心率為_______(答:);(3)試確定m的取值范圍,使得橢圓上有不同的兩點(diǎn)關(guān)于直線對稱(答:); 特別提醒:因?yàn)槭侵本€與圓錐曲線相交于兩點(diǎn)的必要條件,故在求解有關(guān)弦長、對稱問題時,務(wù)必別忘了檢驗(yàn)!12.你了解下列結(jié)論嗎?(1)雙曲線的漸近線方程為;(2)以為漸近線(即與雙曲線共漸近線)的雙曲線方程為為參數(shù),≠0)?!                             ∠议L公式:若直線與圓錐曲線相交于兩點(diǎn)A、B,且分別為A、B的橫坐標(biāo),則=,若分別為A、B的縱坐標(biāo),則=,若弦AB所在直線方程設(shè)為,則=。如(1)已知橢圓上一點(diǎn)P到橢圓左焦點(diǎn)的距離為3,則點(diǎn)P到右準(zhǔn)線的距離為____(答:);(2)已知拋物線方程為,若拋物線上一點(diǎn)到軸的距離等于5,則它到拋物線的焦點(diǎn)的距離等于____;(3)若該拋物線上的點(diǎn)到焦點(diǎn)的距離是4,則點(diǎn)的坐標(biāo)為_____(答:);(4)點(diǎn)P在橢圓上,它到左焦點(diǎn)的距離是它到右焦點(diǎn)距離的兩倍,則點(diǎn)P的橫坐標(biāo)為_______(答:);(5)拋物線上的兩點(diǎn)A、B到焦點(diǎn)的距離和是5,則線段AB的中點(diǎn)到軸的距離為___
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1