【摘要】1直線和圓錐曲線??碱}型運(yùn)用的知識:1、中點(diǎn)坐標(biāo)公式:1212,y22xxyyx????,其中,xy是點(diǎn)1122(,)(,)AxyBxy,的中點(diǎn)坐標(biāo)。2、弦長公式:若點(diǎn)1122(,)(,)AxyBxy,在直線(0)ykxbk???
2024-10-20 15:53
【摘要】精品資源普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書—數(shù)學(xué)[人教版]高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座34)—直線與圓錐曲線的位置關(guān)系一.課標(biāo)要求:1.通過圓錐曲線與方程的學(xué)習(xí),進(jìn)一步體會數(shù)形結(jié)合的思想;2.掌握直線與圓錐曲線的位置關(guān)系判定及其相關(guān)問題。二.命題走向近幾年來直線與圓錐曲線的位置關(guān)系在高考中占據(jù)高考解答題壓軸題的位置,且選擇、填空也有涉及,有關(guān)直線與圓錐曲線的位置關(guān)系的題
2025-06-29 15:44
【摘要】圓錐曲線綜合練習(xí)一、選擇題:1.已知橢圓的長軸在軸上,若焦距為4,則等于()A.4B.5C.7D.82.直線經(jīng)過橢圓的一個焦點(diǎn)和一個頂點(diǎn),則該橢圓的離心率為()A.B.C.D.3.設(shè)雙曲線的漸近線方程為,則的值為()A.4B.3
2025-06-24 02:10
【摘要】平面內(nèi)到兩定點(diǎn)F1、F2距離之和為常數(shù)2a(①)的點(diǎn)的軌跡叫橢圓.有|PF1|+|PF2|=2a.在定義中,當(dāng)②時,表示線段F1F2;當(dāng)③時,不表示任何圖形.2a>|F1F2|2a=|F1F2|2a<
2025-08-09 15:25
【摘要】高二(理科)數(shù)學(xué)(圓錐曲線)同步練習(xí)題一、選擇題1.下面雙曲線中有相同離心率,相同漸近線的是( )A.-y2=1,-=1B.-y2=1,y2-=1C.y2-=1,x2-=1D.-y2=1,-=12.橢圓+=1的焦點(diǎn)為F1、F2,AB是橢圓過焦點(diǎn)F1的弦,則△ABF2的周長是( )A.20B.12C.10D.6
2025-04-04 05:17
【摘要】《圓錐曲線與方程》起始課湖北省荊門市龍泉中學(xué)葉俊杰《圓錐曲線與方程》起始課荊門市龍泉中學(xué)葉俊杰我們知道,用一個垂直于圓錐的軸的平面截圓錐,截口曲線(截面與圓錐側(cè)面的交線)是一個圓.如果改變平面與圓錐軸線的夾角,會得到什么圖形呢?如圖,用一個不垂直于圓錐的軸的平面截圓錐,當(dāng)截面與圓錐的
2025-08-05 04:44
【摘要】解析幾何專題·經(jīng)典結(jié)論收集整理:宋氏資料2016-1-1有關(guān)解析幾何的經(jīng)典神級結(jié)論一、橢圓1.點(diǎn)處的切線平分在點(diǎn)處的外角.(橢圓的光學(xué)性質(zhì))2.平分在點(diǎn)處的外角,則焦點(diǎn)在直線上的射影點(diǎn)的軌跡是以長軸為直徑的圓,除去長軸的兩個端點(diǎn).(中位線)3.以焦點(diǎn)弦為直徑的圓必與對應(yīng)準(zhǔn)線相離.(第二定義)4.以焦點(diǎn)半徑為直徑的圓必與以長軸為直徑
2025-08-05 04:54
【摘要】《圓錐曲線定義》專題練習(xí)----QCL1.已知橢圓的兩個焦點(diǎn)為,,且,弦AB過點(diǎn),則△的周長為()A.10 D.2.過雙曲線的右焦點(diǎn)F2有一條弦PQ,|PQ|=7,F1是左焦點(diǎn),那么△F1PQ的周長為()B. C. D.3.為常數(shù),若動點(diǎn)滿足,則點(diǎn)的軌跡所在的曲線是()A.橢圓B.
2025-06-07 17:16
【摘要】專題十六圓錐曲線1.雙曲線的焦距是10,則實(shí)數(shù)的值是()A.B.4C.16D.812.橢圓的右焦點(diǎn)到直線的距離是()A.B.C.1D.3.若雙曲線的一條準(zhǔn)線與拋物線的準(zhǔn)線重合,則雙曲線的離心率為()A.
2025-08-18 17:18
【摘要】......學(xué)習(xí)參考 橢 圓典例精析題型一 求橢圓的標(biāo)準(zhǔn)方程【例1】已知點(diǎn)P在以坐標(biāo)軸為對稱軸的橢圓上,點(diǎn)P到兩焦點(diǎn)的距離分別為和453,過P
2025-04-17 13:13
【摘要】......圓錐曲線離心率專題訓(xùn)練 1.已知F1,F(xiàn)2是橢圓的兩個焦點(diǎn),若橢圓上存在點(diǎn)P,使得PF1⊥PF2,則橢圓離心率的取值范圍是( ?。.[,1)B.[,1)C.(0,]D.
2025-03-25 00:04
【摘要】......關(guān)于圓錐曲線的中點(diǎn)弦問題直線與圓錐曲線相交所得弦中點(diǎn)問題,是解析幾何中的重要內(nèi)容之一,也是高考的一個熱點(diǎn)問題。這類問題一般有以下三種類型:(1)求中點(diǎn)弦所在直線方程問題;(2)求弦中點(diǎn)的軌跡方程問題;
2025-03-25 00:02
【摘要】第九章 圓錐曲線的離心率問題解析幾何圓錐曲線的離心率問題離心率是圓錐曲線的一個重要幾何性質(zhì),一方面刻畫了橢圓,雙曲線的形狀,另一方面也體現(xiàn)了參數(shù)之間的聯(lián)系。一、基礎(chǔ)知識:1、離心率公式:(其中為圓錐曲線的半焦距)(1)橢圓:(2)雙曲線:2、圓錐曲線中的幾
【摘要】山東高考解析幾何題的推廣及背景溯源2011年高考山東理科第22題,是一道以橢圓為背景考查定值問題、最值問題和存在性問題的解析幾何壓軸題,重點(diǎn)考查推理運(yùn)算能力和數(shù)學(xué)綜合素質(zhì)。本文筆者嘗試對該題的結(jié)論作一般化推廣,并對其背景作深度挖掘和溯源解析,與讀者交流。?題目已知直線與橢圓交于兩不同點(diǎn),且面積,其中為坐標(biāo)原點(diǎn)。(Ⅰ)證明和均為定值;(Ⅱ)設(shè)線段的中點(diǎn)為,求的最大值;(Ⅲ)
2025-07-25 00:15
【摘要】怎樣學(xué)好圓錐曲線(解析幾何的高考熱點(diǎn)與例題解析),從數(shù)學(xué)家笛卡爾開創(chuàng)了坐標(biāo)系那天就已經(jīng)開始.高考中它依然是重點(diǎn),主客觀題必不可少,易、中、:、雙曲線、,高考中的題目都涉及到這些內(nèi)容.,:定義法、直接法、待定系數(shù)法、相關(guān)點(diǎn)法、參數(shù)法等.、線段的中點(diǎn)、弦長、垂直問題,.、方法進(jìn)行歸納提煉,達(dá)到優(yōu)化解題思維、簡化解題過程.(1)方程思想解析幾何的題目大部分都以方程形式給
2025-07-24 02:16