【摘要】曲率是描述曲線局部性質(zhì)(彎曲程度)的量。1M3M2??2M2S?1S?MM?1S?2S?NN???弧段彎曲程度越大,轉(zhuǎn)角越大.轉(zhuǎn)角相同,弧段越短,彎曲程度越大一、平面曲線的曲率概念1??第十一節(jié)曲線的曲率??????S?S)?.M?.MC0Myxo.s
2025-04-21 04:19
【摘要】第四節(jié)高階導(dǎo)數(shù)引例:變速直線運動),(tss?)()(tstv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tstvta定義.)())((,)()(lim))((,)()(0處的二階導(dǎo)數(shù)在點為函數(shù)則稱存在即處可導(dǎo)在點的導(dǎo)數(shù)如果函數(shù)xxfxfxxfxxfxf
2025-04-21 04:25
【摘要】第二節(jié)求導(dǎo)法則一、和、差、積、商的求導(dǎo)法則定理并且可導(dǎo)處也在點分母不為零們的和、差、積、商則它處可導(dǎo)在點如果函數(shù),)(,)(),(xxxvxu).0)(()()()()()(])()([)3();()()()(])()([)2();()(])()([)1(2????????????
2025-04-21 03:39
【摘要】§數(shù)列極限第二章極限與連續(xù)本章是微積分的基礎(chǔ),主要討論函數(shù)的極限與函數(shù)的連續(xù)性。??,,,,,321naaaa稱為數(shù)列,記為na其中稱為數(shù)列的通項或一般項;??na正整數(shù)n稱為的下標。na例如:;,2,,8,4,2??n}2{n;,1,,1,1,1
2025-08-05 06:53
【摘要】;)()(任意小表示AxfAxf????.的過程表示???xXx.0sin)(,無限接近于無限增大時當xxxfx?問題:如何用數(shù)學(xué)語言刻劃函數(shù)“無限接近”.第二節(jié)函數(shù)極限的定義和性質(zhì)一、自變量趨向無窮大時函數(shù)的極限XX???A??Aoxy)(xfy?A定義1.設(shè)函數(shù)大于某一正數(shù)時有定義,若
2025-07-22 11:10
【摘要】一、概念的引入§2.數(shù)列的極限我們在緒論中講到:我們利用階梯形的面積來逼近曲邊三角形的面積(見下頁演示).硯恢陪楔灰橡妒豪棠淪講焰墩爽賭篡愈甸竅包舌客鞠秀萄象限慣矣例班掙微積分86751微積
2025-01-20 05:31
【摘要】1多元函數(shù)的微積分主要內(nèi)容:一.多元函數(shù)的概念二.二元函數(shù)的極限和連續(xù)三.偏導(dǎo)數(shù)的概念及簡單計算四.全微分五.空間曲線的切線與法平面六.曲面的切平面與法線七.多元函數(shù)的極值2設(shè)D是平面上的一個點集.如果對于每個點P(x,y)?D,變量z按照一定法則總有確定的值和它對應(yīng),
2025-04-28 23:40
【摘要】微積分基本定理(79)31、變速直線運動問題變速直線運動中路程為21()dTTvtt?設(shè)某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv,求物體在這段時間內(nèi)所經(jīng)過的路程.另一方面這段路程可表示為)()(12TsTs?原函數(shù)存在
2024-12-08 00:51
【摘要】微積分初步輔導(dǎo)老師:劉丹鳳工作單位:岳陽電大課程的性質(zhì)與任務(wù)《微積分初步》是計算機和數(shù)控專業(yè)的一門必修的重要基礎(chǔ)課程,通過本課程的學(xué)習(xí),使學(xué)生對一元函數(shù)微分、積分有初步認識和了解,使學(xué)生初步掌握微積分的基本知識、基本理論和基本技能,并逐步培養(yǎng)學(xué)生邏輯推理能力、自學(xué)能力,較熟練的運算能力和綜合運用所學(xué)知識分析問題、解決問題的能力
2025-01-19 21:35
【摘要】備考基礎(chǔ)·查清熱點命題·悟通遷移應(yīng)用·練透課堂練通考點課下提升考能首頁上一頁下一頁末頁結(jié)束數(shù)學(xué)第十二節(jié)定積分與微積分基本定理1.定積分的概念第十二節(jié)定積分與微積分基本定理在????abf(x)dx中,
2024-11-23 12:12
【摘要】話說微積分制作人:項晶菁數(shù)學(xué)的核心領(lǐng)域是:?代數(shù)學(xué)——研究數(shù)的理論;?幾何學(xué)——研究形的理論;?分析學(xué)——溝通形與數(shù)且涉及極限運算的部分。?舊三高(高等分析、高等代數(shù)、高等幾何)?數(shù)學(xué)分析權(quán)威R?柯朗所指出的,“微積分乃是一種震撼人心靈的智力奮斗的結(jié)晶”。?現(xiàn)代微積分有時作為“數(shù)學(xué)
2025-01-20 00:10
【摘要】第五章微積分模型例1:(不允許缺貨的存儲模型)設(shè)某廠生產(chǎn)若干種產(chǎn)品,在輪換生產(chǎn)不同的產(chǎn)品時因更換設(shè)備要付生產(chǎn)準備費(與產(chǎn)品數(shù)量無關(guān)),同一的產(chǎn)量大于需求時因占用倉庫要付存儲費。已知某一產(chǎn)品日需求量為100件,生產(chǎn)準備費5000元,存儲費每件每日1元,若生產(chǎn)能力遠大于需求,并且不允許出現(xiàn)缺貨,試安排該產(chǎn)品的生產(chǎn)計劃,即多少天生產(chǎn)一次(生產(chǎn)周期)
2025-04-29 01:24
【摘要】第四章不定積分一、原函數(shù))()(xfxF??或dxxfxdF)()(?稱是的原函數(shù))(xF)(xf二、不定積分CxFdxxf???)()(三、基本性質(zhì)??)()(xfdxxf?????dxxfdxxfd)()(??CxFdxxF????)()(CxFxdF???
2024-11-03 21:17
【摘要】微積分理論數(shù)列的極限函數(shù)的極限微積分線性代數(shù)馮國臣2021/12/12定義如果對于任意給定的正數(shù)?(不論它多么小),總存在正數(shù)N,使得對于Nn?時的一切nx,不等式???axn都成立,那末就稱常數(shù)a是數(shù)列nx的極限,或者稱數(shù)列nx收斂于a,記為
【摘要】第五節(jié)機動目錄上頁下頁返回結(jié)束對坐標的曲面積分一、基本概念觀察以下曲面的側(cè)(假設(shè)曲面是光滑的)曲面分上側(cè)和下側(cè)曲面分內(nèi)側(cè)和外側(cè)曲面法向量的指向決定曲面的側(cè).決定了側(cè)的曲面稱為有向曲面.曲面的投影問題:面在xoyS?,在有向曲面Σ上取一小塊
2024-12-08 05:11