【摘要】§3.空間向量的數(shù)量積運算知識點一求兩向量的數(shù)量積如圖所示,已知正四面體O-ABC的棱長為a,求AB·OC..解由題意知|AB|=|AC|=|AO|=a,且〈AB,AO〉=120AB,CA〉=12
2024-11-20 03:14
【摘要】周承紅兗州市實驗高級中學線性運算1.向量與數(shù)量有何區(qū)別?2.怎樣來表示向量?3.什么叫相等向量?數(shù)量只有大小沒有方向;向量既有大小又有方向1)有向線段表示2)用字母來表示如aAB長度相等,方向相同的向量.(向量是與起點無關的自由向量,任何向量可以在不
2025-08-05 03:54
【摘要】向量減法運算及其幾何意義??谒闹虚喿x與理解閱讀課本P85頁,10分鐘后檢測探究:向量是否有減法?復習:實數(shù)減法的意義是什么?答:減去一個數(shù)等于加上這個數(shù)的相反數(shù),即a-b=a+(-b)猜想:向量減法的意義是什么?答:減去一個向量等于加上這個向量的相反向量,即a-b=a+(-b)類比相反數(shù)
2025-07-18 11:57
【摘要】1思考1數(shù)量積的性質思考2數(shù)量積的運算律引入數(shù)量積運算定義課堂練習空間向量的數(shù)量積運算2022-11-052空間向量的數(shù)量積運算(一)SF?W=|F||s|cos?根據(jù)功的計算,我們定義了平面兩向量的數(shù)量積運算.一旦定義出來,我們發(fā)現(xiàn)這種運算非常有用,它能解
2025-07-18 12:59
【摘要】§3.空間向量的正交分解及其坐標表示知識點一向量基底的判斷已知向量{a,b,c}是空間的一個基底,那么向量a+b,a-b,c能構成空間的一個基底嗎?為什么?解∵a+b,a-b,c不共面,能構成空間一個基底.假設a+b,a-b,c共面,則存在x,
2024-12-08 01:49
【摘要】一、向量的直角坐標運算則設),,(),,,(321321bbbbaaaa??;??ab;??ab;??a;??ab//;.??ab;??ab112233(,,)???ababab112233(,,)???ababab123(,,),()??
2025-10-31 01:17
【摘要】一、向量的直角坐標運算二、距離與夾角(1)向量的長度(模)公式注意:此公式的幾何意義是表示長方體的對角線的長度。在空間直角坐標系中,已知、,則(2)空間兩點間的距離公式注意:(1)當時,同向;(2)當
2025-11-03 16:42
【摘要】空間向量的坐標一向量在軸上的投影與投影定理二向量在坐標軸上的分量與向量的坐標三向量的模與方向余弦的坐標表示式一、向量在軸上的投影與投影定理.上的有向線段是軸,設有一軸uABuuAB.ABABABuuABuABAB==llllll,即的值,
2024-11-17 23:31
【摘要】空間向量及其運算共線向量定理共面向量定理0//aabbabb???對空間任意兩個向量、(),的充要條件是存在實數(shù),使=.,,,abpabxypxayb如果兩個向量不共線,則向量與向量共面的充要
2025-07-23 08:50
【摘要】答案返回
2025-07-23 08:49
【摘要】2022年1月4日12時38分(共31張)1高等數(shù)學(下冊)主講:陳銀輝注意:?1.課堂必須保持安靜,有問題請舉手。?2.上課嚴禁玩手機,睡覺。?。?,嚴禁抄襲;?作業(yè)書寫須工整,不得把作業(yè)本當草稿本。?,不得私下發(fā)牢騷擾亂課堂。2022年1月4日12時
2024-12-08 00:43
【摘要】向量減法運算及其幾何意義知識回顧個向量的和向量分別如何操作?abaabba+ba+b三角形法則:首尾相接連端點.平行四邊形法則:起點相同連對角.?a+0=0+a=aa與b為相反向量a+b=0a+b=b+a(a+b)+c=a+(b
2025-09-21 11:58
【摘要】東聯(lián)高級中學數(shù)學組必修④第二章三角函數(shù)向量加法運算及其幾何意義復習:1、什么叫向量?一般用什么表示?2、有向線段的三個要素是什么?3、什么叫平行向量?什么是相等向量?什么叫共線向量?課前預習導學:臺北香港上海由于大陸和臺灣沒有直航,因此2022年春節(jié)探親,乘飛
2025-07-24 04:32
【摘要】第二節(jié)向量及其線性運算一、向量及其幾何表示二、向量的坐標表示三、向量的模與方向角四、向量的線性運算五、向量的分向量表示式六、小結思考題向量(vector):既有大小又有方向的量.向量表示:以1M為起點,2M為終點的有向線段.1M2M??a?21MM一、向量及其幾何表示
2025-08-21 12:44
【摘要】算及其幾何意義:a?Ab?BCba???a?a?Ab?Bb?OCba???特點:首尾相接首尾連特點:起點相同終點連babBaABAab??::O特點:共起點,連終點,指被減思考:已知非零向量,
2025-07-18 10:05