【正文】
圖3(三)、解決方程與不等式的問題處理方程問題時,把方程的根的問題看作兩個函數(shù)圖像的交點問題;處理不等式時,從題目的條件與結論出發(fā),聯(lián)系相關函數(shù),著重分析其幾何意義,從圖形上找出解題的思路。分析:在分析此題時, 要引導學生利用數(shù)形結合思想, 在同一坐標系中, 先分別畫出 y = 4 x, y = x + 1, y = (5 x)的圖像,如圖2。如圖 1, 由圖我們不難得出A∩B=[0,3]。下面就數(shù)形結合思想在集合問題、函數(shù)、方程、不等式、線性規(guī)劃、數(shù)列及解析幾何中的應用做一個系統(tǒng)的分析。 作為一種數(shù)學思想方法,數(shù)形結合的應用大致又可分為兩種基本形式,一是“形”的問題轉化為用數(shù)量關系去解決,運用代數(shù)、三角知識進行討論,它往往把技巧性極強的推理論證轉化可具體操作的代數(shù)運算,很好的起到化難為易的作用。中學數(shù)學研究的對象可分為兩大部分,一部分是數(shù),一部分是形,但數(shù)與形是有聯(lián)系的,這個聯(lián)系稱之為數(shù)形結合或形數(shù)結合。中學數(shù)學教學中處處滲透著基本數(shù)學思想,如果能使它落實到學生學習和運用數(shù)學的思維活動上,它就能在發(fā)展學生的數(shù)學能力方面發(fā)揮出一種方法論的功能。s deficiency by learning from others strong points mutually in short”. Counts the shape union as one mon mathematical method, has municated the algebra, the triangle and the geometry inner link. On one hand, with the aid in the graph nature may make many abstract mathematics concepts and the stoichiometric relation visualization and simplification, for the human by the intuition enlightenment. On the other hand, transforming the graph question as the algebra question, obtains the precise conclusion. Therefore, counts the shape union not to take one problem solving method merely, but should take one very important mathematics thinking method, it may expand students39。一方面,借助于圖形的性質可以將許多抽象的數(shù)學概念和數(shù)量關系形象化、簡單化,給人以直覺的啟示。 數(shù)形結合作為一種常見的數(shù)學方法, 溝通了代數(shù)、三角與幾何的內在聯(lián)系。關鍵詞: 數(shù)形結合思想;直觀;數(shù)學教學;應用Discusses the number shape union thought shallowly in the teaching applicationWang yang(Department of Mathematics, Hefei Normal University)ABSTRACTCounts the shape union is unifying the question stoichiometric relation and the space form to inspect, accor