【摘要】§數(shù)學(xué)歸納法學(xué)習(xí)目標(biāo)思維脈絡(luò)1.能理解用數(shù)學(xué)歸納法證明問題的原理.2.會用數(shù)學(xué)歸納法證明與正整數(shù)有關(guān)的等式及數(shù)列問題.3.能用數(shù)學(xué)歸納法證明與n有關(guān)的不等式整除問題.4.注意總結(jié)用數(shù)學(xué)歸納法證明命題的步驟與技巧方法.121.數(shù)學(xué)歸納法數(shù)學(xué)歸納法是用來證
2024-11-18 00:49
【摘要】難點31數(shù)學(xué)歸納法解題,抽象與概括,從特殊到一般是應(yīng)用的一種主要思想方法.●難點磁場(★★★★)是否存在a、b、c使得等式1·22+2·32+…+n(n+1)2=(an2+bn+c).●案例探究[例1]試證明:不論正數(shù)a、b、c是等差數(shù)列還是等比數(shù)列,當(dāng)n>1,n∈N*且a、b、c互不相等時,均有:an+>2bn.命題意圖:本題主要考查數(shù)學(xué)歸納法證
2025-06-08 00:20
【摘要】I淺談數(shù)學(xué)歸納法的應(yīng)用畢業(yè)論文目錄1緒論 1引言 1數(shù)學(xué)歸納法的來源 12數(shù)學(xué)歸納法的概述 3常用數(shù)學(xué)證明方法 3演繹法 3歸納法 3數(shù)學(xué)歸納法基本原理及其其它形式 3數(shù)學(xué)歸納法概念 3數(shù)學(xué)歸納法的基本原理 4數(shù)學(xué)歸納法的其它形式 53數(shù)學(xué)歸納法的步驟 6數(shù)學(xué)歸納法的步驟 6三個步驟缺一不
2025-04-04 04:44
【摘要】I淺談數(shù)學(xué)歸納法的應(yīng)用摘要數(shù)學(xué)歸納法是一種非常重要的數(shù)學(xué)方法,它不僅對我們中學(xué)數(shù)學(xué)的學(xué)習(xí)有著很大的幫助,而且在高等數(shù)學(xué)的學(xué)習(xí)及研究中也是一種重要的方法,數(shù)學(xué)歸納法對公式的正確性檢驗中也有著很大的應(yīng)用。數(shù)學(xué)歸納法是將無限化為有限的橋梁,主要探討關(guān)于自然數(shù)集的有關(guān)命題或者恒等式,數(shù)學(xué)歸納法在中學(xué)數(shù)學(xué)中的整除問題,恒等式證明,公理證明,排列和
2025-06-01 21:33
【摘要】思考1思考2復(fù)習(xí)引入練習(xí)答案作業(yè):課本54P6題數(shù)學(xué)歸納法證明不等式數(shù)學(xué)歸納法證明不等式(即n=n0第一個命題對應(yīng)的n的值,如n0=1)(歸納奠基);n=k時命題成立,證明當(dāng)n=k+1時命題也成立(歸納遞推).數(shù)學(xué)歸納法:關(guān)于正整數(shù)n的命題(相當(dāng)于多米諾骨牌
2025-01-15 08:38
【摘要】第一篇:歸納法證明不等式 歸納法證明不等式 由于lnx0則x 1設(shè)f(x)=x-lnxf'(x)=1-1/x0 則f(x)為增函數(shù)f(x)f(1)=1 則xlnx 則可知道等式成...
2024-10-28 02:13
【摘要】高中新課標(biāo)選修(2-2)推理與證明綜合測試題一、選擇題1.分析法是從要證明的結(jié)論出發(fā),逐步尋求使結(jié)論成立的()A.充分條件B.必要條件C.充要條件D.等價條件答案:A2.結(jié)論為:nnxy?能被xy?整除,令1234n?,,,驗證結(jié)論是否正確,得到此結(jié)論成立的條件可以為()
2024-11-15 21:17
【摘要】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第2章作業(yè)新人教B版選修2-2一、選擇題1.用數(shù)學(xué)歸納法證明1+q+q2+?+qn+1=qn+2-1q-1(n∈N*,q≠1),在驗證n=1等式成立時,等式左邊的式子是()A.1B.1+qC.1+q+q2
2024-12-03 11:27
【摘要】 教學(xué)目標(biāo) 前面在講加法原理、乘法原理、排列組合時已經(jīng)穿插講解了計數(shù)中的一些常用的方法,比如枚舉法、樹形圖法、標(biāo)數(shù)法、捆綁法、排除法、插板法等等,這里再集中學(xué)習(xí)一下計數(shù)中其...
2025-04-02 02:00
【摘要】湖南省邵陽市隆回二中選修2-2學(xué)案推理與證明數(shù)學(xué)歸納法(2)【學(xué)習(xí)目標(biāo)】1.了解數(shù)學(xué)歸納法的原理,并能以遞推思想作指導(dǎo),理解數(shù)學(xué)歸納法的操作步驟;2.能用數(shù)學(xué)歸納法證明一些簡單的數(shù)學(xué)命題,并能嚴(yán)格按照數(shù)學(xué)歸納法證明問題的格式書寫;3.數(shù)學(xué)歸納法中遞推思想的理解.【自主學(xué)習(xí)】復(fù)習(xí)1:數(shù)學(xué)歸納
2024-11-19 20:35
【摘要】第2課時數(shù)學(xué)歸納法的應(yīng)用雙基達標(biāo)?限時20分鐘?1.用數(shù)學(xué)歸納法證明an+bn2≥????a+b2n(a,b是非負(fù)實數(shù),n∈N+)時,假設(shè)n=k命題成立之后,證明n=k+1命題也成立的關(guān)鍵是__________________.解析要想辦法出現(xiàn)ak+1+
2024-12-04 20:00
【摘要】數(shù)學(xué)歸納法證明不等式第四講????????????.,,,,|sin||sin|:,,.,,,,???????????????????NnxnxxnNnnNnnnnnNnnnNnnnn11152200???例如等式數(shù)多個正整數(shù)相關(guān)
2024-11-17 15:12
【摘要】楚水實驗學(xué)校高二數(shù)學(xué)備課組數(shù)學(xué)歸納法(二)復(fù)習(xí)回顧:什么是數(shù)學(xué)歸納法?如果(1)當(dāng)n取第一個值n0時結(jié)論正確;(2)假設(shè)當(dāng)n=k(k∈N+,且k≥n0)時結(jié)論正確,證明當(dāng)n=k+1時結(jié)論也正確.那么,命題對于從n0開始的所有正整數(shù)n都成立數(shù)學(xué)歸納法公理··
2024-11-18 15:25
【摘要】高考數(shù)學(xué)難點突破訓(xùn)練——數(shù)列與數(shù)學(xué)歸納法,曲線2(0)yxy??上的點iP與x軸的正半軸上的點iQ及原點O構(gòu)成一系列正三角形△OP1Q1,△Q1P2Q2,?△Qn-1PnQn?設(shè)正三角形1nnnQPQ?的邊長為na,n∈N﹡(記0Q為O),??,0nnQS.(1)求1a的值;(2)求
2025-08-20 20:23
2025-04-02 01:42