【摘要】平面向量:例2(1)化簡:①___;②____;③_____(2)若正方形的邊長為1,,則=_____(3)若O是所在平面內(nèi)一點,且滿足,則的形狀為_9.與向量=(12,5)平行的單位向量為()A.B.C.
2025-03-25 01:22
【摘要】平面向量的內(nèi)積【教學(xué)目標(biāo)】知識目標(biāo):(1)了解平面向量內(nèi)積的概念及其幾何意義.(2).能力目標(biāo):通過實例引出向量內(nèi)積的定義,培養(yǎng)學(xué)生觀察和歸納的能力.【教學(xué)重點】平面向量數(shù)量積的概念及計算公式.【教學(xué)難點】數(shù)量積的概念及利用數(shù)量積來計算兩個非零向量的夾角.【教學(xué)設(shè)計】教材從某人拉小車做功出發(fā),引入兩個向量內(nèi)積的概念.需要強(qiáng)調(diào)力與位移都是向量,
2025-04-17 01:00
【摘要】......平面向量一、知識溫故:既有大小又有方向的量叫向量,有二個要素:大小、方向.:①用有向線段表示;②用字母、等表示;③平面向量的坐標(biāo)表示:分別取與軸、軸方向相同的兩個單位向量、作為基底。任作一個向量,由平面向量基本定理
【摘要】平面向量的概念說課稿 各位專家: 你們好! 今天我說課的課題是《平面向量的概念》,這是江蘇省職業(yè)學(xué)校文化課教材《基礎(chǔ)模塊·下冊》第七章平面向量中的第一節(jié)的內(nèi)容,我將嘗試運用新課改的理念、中職學(xué)生...
2024-12-04 22:04
【摘要】第三節(jié)平面向量的數(shù)量積及平面向量的應(yīng)用舉例基礎(chǔ)梳理(1)定義已知兩個向量a和b,作=a,=b,則∠AOB=θ叫做向量a與b的夾角.(2)范圍向量夾角θ的取值范圍是,a與b同向時,夾角θ=
2024-11-12 16:44
【摘要】平面向量經(jīng)典例題講解講課時間:___________姓名:___________課時:___________講課教師:___________一、選擇題(題型注釋)1.空間四邊形OABC中,,,,點M在OA上,且,為的中點,則=()A.B.C.D.【答案】B【解析】試題分析:因為
2025-03-25 01:23
【摘要】......學(xué)習(xí)參考一、選擇題1.已知三點滿足,則的值())143()152()314(??,,、,,、,,?CBAACB??2.已知,,且,則(),?a|?bba/?5.已知()0
【摘要】平面向量基礎(chǔ)試題(一)一.選擇題(共12小題)1.已知向量=(1,2),=(﹣1,1),則2+的坐標(biāo)為( )A.(1,5) B.(﹣1,4) C.(0,3) D.(2,1)2.若向量,滿足||=,=(﹣2,1),?=5,則與的夾角為( ?。〢.90° B.60° C.45° D.30°3.已知均為單位向量,它們的夾角為60
【摘要】平面向量線性運算典型例題1、在三角形ABC中,點在上,平分.若,,,,則(A)(B)(C)(D)【答案】B【命題意圖】本試題主要考查向量的基本運算,考查角平分線定理.【解析】因為平分,由角平分線定理得,所以D為AB的三等分點,且,所以,故選B.2、設(shè)點M是線段BC的中點,點A在直線BC外,則(A)8(B)4
【摘要】平面向量數(shù)量積說課稿 平面向量數(shù)量積說課稿1一、說教材 平面向量的數(shù)量積是兩向量之間的乘法,而平面向量的坐標(biāo)表示把向量之間的運算轉(zhuǎn)化為數(shù)之間的運算。本節(jié)內(nèi)容是在平面向量的坐標(biāo)表示以及平...
【摘要】向量的減法baOaaaaaaaabbbbbbbBbaAa+b一、復(fù)習(xí):1.向量加法法則:三角形法則baAaaaaaaaabbbBbaDaCba+b平行四邊形法則
2025-08-15 21:42
【摘要】××××中學(xué)教學(xué)設(shè)計方案年月日星期第節(jié)課題平面向量的坐標(biāo)運算章節(jié)第五章第二節(jié)教學(xué)目的知識目標(biāo)1.了解平面向量的基本定理,理解平面向量的坐標(biāo)的概念,會用坐標(biāo)形式進(jìn)行向量
2025-08-04 16:11
【摘要】第7章平面向量的坐標(biāo)表示(1)向量的概念:既有方向又有大小的量,注意向量和數(shù)量的區(qū)別;(2)零向量:長度為零的向量叫零向量,記作:,注意零向量的方向是任意方向;(3)單位向量:給定一個非零向量,與同向且長度為1的向量叫的單位向量,的單位向量是;(4)相等向量:方向與長度都相等的向量,相等向量有傳遞性;(5)平行向量(也叫共線向量):如果向量的基線互相平
2025-06-30 20:51
【摘要】平面向量常見題型突破考向一 平面向量的線性運算【例1】?如圖,D,E,F(xiàn)分別是△ABC的邊AB,BC,CA的中點,則( ).A.++=0B.-+=0B.C.+-=0D.--=0[審題視點]利用平面向量的線性運算并結(jié)合圖形可求.解:∵++=0,∴2+2+2=0即++=0. A方法總結(jié):三角形法則和平行四邊形法則是向量線性運算的主要方法,共起
【摘要】平面向量概念、方法、題型、易誤點及應(yīng)試技巧總結(jié)第1頁共26頁概念、方法、題型、易誤點及應(yīng)試技巧總結(jié)平面向量一.向量有關(guān)概念:1.向量的概念:既有大小又有方向的量,注意向量和數(shù)量的區(qū)別。向量常用有向線段來表示,如AB???,或a???或a;向量的三要素:起點、方向、長度。注意不能說向量就是有向線段
2024-10-26 20:51