【摘要】abxyo??A曲邊梯形由連續(xù)曲線實(shí)例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2025-07-22 11:11
【摘要】定義1設(shè)函數(shù))(xf在區(qū)間),[??a上連續(xù),且)()(xfxF??,如果極限????babdxxf)(lim存在,則稱此極限為函數(shù))(xf在無(wú)窮區(qū)間),[??a上的反常積分,記作???adxxf)(.???adxxf)(?????babdxxf)(lim當(dāng)極限存在
2025-07-22 11:10
【摘要】第十節(jié)函數(shù)的極值與最值一、函數(shù)的極值及其求法oxyab)(xfy?1x2x3x4x5x6xoxyoxy0x0x定義使得有則稱為的一個(gè)極大值點(diǎn)(或極小值點(diǎn))極大值點(diǎn)與極小值點(diǎn)統(tǒng)稱為極值點(diǎn).極大值與極小值統(tǒng)稱為極值.
【摘要】YANGZHOUUNIVERSITYII第四節(jié)?基本積分法:直接積分法;換元積分法;分部積分法?初等函數(shù)求導(dǎo)初等函數(shù)積分機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束一、有理函數(shù)的積分二、可化為有理函數(shù)的積分舉例有理函數(shù)的積分本節(jié)內(nèi)容:
2024-11-03 22:45
【摘要】設(shè)函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導(dǎo)數(shù),則有????bababavduuvudv.定積分的分部積分公式推導(dǎo)??,vuvuuv?????,)(babauvdxuv???,??????bababadxvudxvuuv.?????bababavduuvud
2025-04-21 05:00
【摘要】一、隱函數(shù)的導(dǎo)數(shù)三、小結(jié)思考題二、由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)第四節(jié)隱函數(shù)及由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)一、隱函數(shù)的導(dǎo)數(shù)定義:.)(0),(稱為隱函數(shù)所確定的函數(shù)由方程xyyyxF??.)(形式稱為顯函數(shù)xfy?0),(?yxF)(xfy?隱函數(shù)的顯化問題:隱函數(shù)不易顯
2025-08-22 01:20
【摘要】第六節(jié)無(wú)窮小的比較一、無(wú)窮小的比較例如,xxx3lim20?xxxsinlim0?20sinlimxxx?.sin,,,02都是無(wú)窮小時(shí)當(dāng)xxxx?極限不同,反映了趨向于零的“快慢”程度不同.;32要快得多比xx;sin大致相同與xx,0?,
2025-08-21 12:40
【摘要】一、空間曲線及其方程二、空間曲線在坐標(biāo)面上的投影三、小結(jié)思考題第六節(jié)空間曲線及其方程一、空間曲線及其方程?????0),,(0),,(zyxGzyxF空間曲線的一般方程曲線上的點(diǎn)都滿足方程,滿足方程的點(diǎn)都在曲線上,不在曲線上的點(diǎn)不能同時(shí)滿足兩個(gè)方程.xoz
2025-08-21 12:38
【摘要】主要內(nèi)容典型例題習(xí)題課第二章極限(一)極限的概念(二)連續(xù)的概念一、主要內(nèi)容左右極限兩個(gè)重要極限求極限的常用方法無(wú)窮小的性質(zhì)極限存在的充要條件判定極限存在的準(zhǔn)則無(wú)窮小的比較極限的性質(zhì)數(shù)列極限函
2025-08-21 12:39
【摘要】第二節(jié)向量及其線性運(yùn)算一、向量及其幾何表示二、向量的坐標(biāo)表示三、向量的模與方向角四、向量的線性運(yùn)算五、向量的分向量表示式六、小結(jié)思考題向量(vector):既有大小又有方向的量.向量表示:以1M為起點(diǎn),2M為終點(diǎn)的有向線段.1M2M??a?21MM一、向量及其幾何表示
2025-08-21 12:44
【摘要】一、全微分二、全微分在近似計(jì)算中的應(yīng)用三、小結(jié)思考題第三節(jié)全微分及其應(yīng)用),(),(yxfyxxf???xyxfx??),(),(),(yxfyyxf???yyxfy??),(二元函數(shù)對(duì)x和對(duì)y的偏微分(partialdifferential)二元函數(shù)對(duì)
2025-08-11 16:43
【摘要】回顧曲邊梯形求面積的問題??badxxfA)(第八節(jié)定積分的幾何應(yīng)用曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成。abxyo)(xfy?abxyo)(xfy?提示若用A?表示任一小區(qū)間],[xx
2025-04-21 04:48
【摘要】calculus§定積分基本積分方法301sinsinxxdx???例:求32sinsinsinsinsincosxxxxxx????解:由于被積函數(shù)(1)一、直接積分法cossin,02cossin,2xxxxxx
2025-01-19 21:34
【摘要】一、差分方程的簡(jiǎn)單經(jīng)濟(jì)應(yīng)用二、小結(jié)第九節(jié)差分方程的簡(jiǎn)單經(jīng)濟(jì)應(yīng)用一、差分方程的簡(jiǎn)單經(jīng)濟(jì)應(yīng)用差分方程在經(jīng)濟(jì)領(lǐng)域的應(yīng)用十分廣泛,下面從具體的實(shí)例體會(huì)其應(yīng)用的場(chǎng)合和應(yīng)用的方法.??.01本利和年末的,求,且初始存款額為設(shè)為年利率,年存款總額,為設(shè)存款模型例一:tSrSSSrtStttt???解tttr
2025-08-21 12:41
【摘要】第15講│定積分與微積分基本定理第15講定積分與微積分基本定理知識(shí)梳理第15講│知識(shí)梳理1.定積分的定義如果函數(shù)f(x)在區(qū)間[a,b]上連續(xù),用分點(diǎn)a=x0<x1<…<xi-1<xi<…<xn=b將區(qū)間[a,b]等分成
2024-11-11 06:00