【摘要】勾股定理的逆定的逆定理的探究方法.二、過程與方法1.用三邊的數量關系來判斷一個三角形是否為直角三角形,培養(yǎng)學生數形結合的思想.2.通過對Rt△判別條件的研究,培養(yǎng)學生大膽猜想,勇于探索的創(chuàng)新精神.三、情感態(tài)度與價值觀1.通過介紹有關歷史資料,激發(fā)學生解決問題的愿望.2.通過對勾股定理逆定理的探究;培養(yǎng)學生學習數學的興趣和創(chuàng)新精神.教學重點探究勾股定理的逆定理,理解互逆命題,
2025-04-16 23:55
【摘要】morningafternooneveningUnit2Howareyou?鶴洞小學陸慧恒BendadmumgrandpagrandmaBenmumgrandpagrandmaBendadGoodevening,Ben.Howareyou?Goodevening,Dad.
2024-11-20 23:49
【摘要】2020年4月10日第7周星期第節(jié)1教學內容:本節(jié)課主要學習勾股逆定理以及應用.課時:2教學目標:探索幵掌握直角三角形判別思想,會應用勾股逆定理解決實際問題.經歷直角三角形判
2024-11-21 01:10
【摘要】第一篇:《勾股定理逆定理》觀評課報告 《勾股定理逆定理》觀評課報告 《數學課程標準》明確指出:“有效的數學活動不能單純地依賴于模仿與記憶,學生學習數學的重要方式是動手實踐、自主探索與合作交流,以促...
2024-11-04 14:21
【摘要】14.2勾股定理的應用第14章勾股定理第2課時勾股定理及其逆定理的綜合運用2.如圖,在4×5網格中,每個小正方形的頂點都叫做格點,點A是其中的一個格點,若B,C也是網格中的格點,且△ABC是以BC為底邊,腰長為的等腰直角三角形,那么符合條件的△ABC一共有()A.6個B.
2024-11-09 13:34
【摘要】逆定理(一)勾股定理如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2+b2=c2學習目標1、探究并證明勾股定的逆定理,并能運用勾股定理的逆定理判斷一個三角形是否是直角三角形;2、了解原命題、逆命題、原定理、逆定理、勾股數的概念,并了解原命題是真命題,它的逆命題不一定是真命題。
2024-11-21 05:35
【摘要】第1頁共2頁初中數學勾股定理及其逆定理基礎題一、單選題(共9道,每道11分)5和7,則斜邊長的平方為()D.12B所代表正方形的面積是(),不能作為直角三角形三邊長度的是()=7,b=24,c=25
2025-08-11 21:25
【摘要】勾股定理的逆定理學習目標:;2.理解互逆命題、互逆定理、勾股數的概念及互逆命題之間的關系;3.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是直角三角形;4.會運用勾股定理的逆定理解決相關實際問題.重點:勾股定理的逆定理及其應用難點:勾股定理的逆定理的證明學法指導:10分鐘精讀一遍73—74頁,
2024-11-20 23:46
【摘要】關于勾股定理的幾個誤區(qū)示例一、主觀確定斜邊例1 已知直角三角形的三邊長分別是3,4,x,則x=_______________.錯解:由勾股定理,得+=,∴x=5.錯解分析:這種解法是將x當成斜邊,事實上,本題沒有指明x與4的大小關系,因此長度為4的邊可能是直角邊,也可能是斜邊,應分兩種情況討論.正解:當x為斜邊時,同錯解.當4為斜邊時,由勾股定理,得x==,∴x
2025-08-05 03:59
【摘要】一、復習回顧基礎知識鞏固練習;1、等邊三角形的高為2,則它的面積是 。2、直角三角形兩直角邊分別為6cm和8cm,則斜邊上的中線長為 。A 3、如圖,有一塊直角三角形紙片,兩直角邊AC=6cm,EBC=8c
2025-03-24 13:00
【摘要】18.2勾股定理的逆定理(2)導學案【學習目標】:1.利用勾股定理的逆定理解決方位角等實際應用題。2.進一步加深性質定理與判定定理之間關系的認識重難點:靈活應用勾股定理及逆定理解決實際問題。學法指導:5分鐘閱讀75頁例2,在針對預習案二次閱讀75頁例題2,解答預習案中的問題,疑惑時記錄在我的疑惑欄內,準備
【摘要】X古埃及人曾用下面的方法得到直角按照這種做法真能得到一個直角三角形嗎??古埃及人曾用下面的方法得到直角:用13個等距的結,把一根繩子分成等長的12段,然后以3個結,4個結,5個結的長度為邊長,用木樁釘成一個三角形,其中一個角便是直角。下面的三組數分別是一個三角形的三邊長a,b,c:
2024-11-21 02:56
【摘要】理4ACB操作?每個同學的桌上有一段12cm長的線,請同學量出4cm,用大頭釘固定好把生下的線分成5cm和3cm兩段拉緊固定,用量角器量出最大角的度數。勾股定理的逆命題?如果三角形的一條邊的平方等于其它兩條邊的平方和,那么這個三角形是直角三角形。?已知:?求證:?證明:
【摘要】勾股定理及其逆定理的應用常見題型利用勾股定理求線段長1.如圖,在等腰直角三角形ABC中,∠ABC=90°,D為AC邊的中點,過D點作DE⊥DF,交AB于E,交BC于F,若AE=4,FC=3,求EF的長.(注:直角三角形斜邊上的中線等于斜邊的一半)利用勾股定理求面積2.如圖,長方形紙片ABCD沿對角線AC折疊,設點D落在D′處,BC交AD′于點
2025-03-24 12:59
【摘要】正文:勾股定理逆定理教學設計 勾股定理逆定理教學設計 勾股定理逆定理教學設計1 一、教材分析 (一)教材所處的地位 這節(jié)課是九年制義務教育課程標準實驗教科書八年級第一章第一節(jié)探索勾股定理第一...
2024-11-04 18:26