freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

數(shù)學(xué)思想方法在數(shù)學(xué)教學(xué)中的運(yùn)用(文件)

2024-10-31 12:20 上一頁面

下一頁面
 

【正文】 論推導(dǎo)出發(fā)得出結(jié)論。比如:在初二剛上的角平分線的性質(zhì)教學(xué)中,本人首先從古時(shí)木匠師傅利用角平分儀平分角入手,讓學(xué)生探討其中的奧妙?老師也制作一簡易的角平分儀,演示如何平分已知角;再折紙?jiān)囼?yàn)平分已知角,請(qǐng)同學(xué)們說出他們平分角的道理?緊接著根據(jù)剛才的原理借助制作的角平分儀讓學(xué)生用尺規(guī)作已知角的平分線;然后再讓學(xué)生動(dòng)手折紙?jiān)囼?yàn),經(jīng)歷探討、研究、發(fā)現(xiàn)、討論、歸納總結(jié)得出命題;最后再讓證明這個(gè)命題,得出角平分線的性質(zhì)。代入法解二元一次方程組只要認(rèn)識(shí)了消元思想,那么對(duì)于代入法解二元一次方程組的具體步驟就不會(huì)死記硬背了,而是能夠順勢(shì)自然地理解,并能夠靈活。更談不上創(chuàng)新能力的形成。逐步形成用數(shù)學(xué)思想方法指導(dǎo)思維活動(dòng),這樣在遇到同類問題時(shí)才能胸有成竹,從容對(duì)待。顯然上述的問題解決過程中,學(xué)生通過比較不同的方法,體會(huì)到了數(shù)學(xué)思想在解題中的重要作用,激發(fā)學(xué)生的求知興趣,從而加強(qiáng)了對(duì)數(shù)學(xué)思想的認(rèn)識(shí)。初中數(shù)學(xué)中蘊(yùn)含的數(shù)學(xué)思想方法許多,但最基本的數(shù)學(xué)思想方法是數(shù)形結(jié)合的思想,分類討論思想、轉(zhuǎn)化思想、函數(shù)的思想,突出這些基本思想方法,就相當(dāng)于抓住了中學(xué)數(shù)學(xué)知識(shí)的精髓。數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,數(shù)形結(jié)合的思想可以使某些抽象的數(shù)學(xué)問題直觀化、生動(dòng)化,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問題便迎刃而解,且解法簡捷。要求學(xué)生先畫出“十字”圖,分析表示出兩人在10分鐘、40分鐘時(shí)的位置,由圖分析從而列出方程組。再如:在同一圖形內(nèi),畫出∠AOB=60176。轉(zhuǎn)化思想解決某些數(shù)學(xué)問題時(shí),如果直接求解較為困難,可通過觀察、分析、類比、聯(lián)想等思維過程,運(yùn)用恰當(dāng)?shù)臄?shù)學(xué)方法進(jìn)行變換,將問題轉(zhuǎn)化為一個(gè)新問題(相對(duì)來說較為熟悉的問題),通過新問題的求解,、達(dá)到解決原問題的目的。轉(zhuǎn)化思想是指根據(jù)已有知識(shí)、經(jīng)驗(yàn),通過觀察、聯(lián)想、類比等手段,把問題進(jìn)行變換,轉(zhuǎn)化為已經(jīng)解決或容易解決的問題。要希望學(xué)生能想得到,就要特別注意要讓學(xué)生經(jīng)歷歸納公式的形成過程,也就是要在教學(xué)中潛移默化的教給學(xué)生一些基本套路。例如:求代數(shù)式的值的教學(xué)時(shí),通過強(qiáng)調(diào)解題的第一步“當(dāng)??時(shí)”的依據(jù),滲透函數(shù)的思想方法——字母每取一個(gè)值,代數(shù)式就有唯一確定的值。也就是說,轉(zhuǎn)化方法的基本思想是在解決數(shù)學(xué)問題時(shí),將待解決的問題甲,通過某種轉(zhuǎn)化過程,歸結(jié)到一類已經(jīng)解決或者比較容易解決的問題乙,然后通過問題乙還原解決復(fù)雜的問題甲。如在學(xué)習(xí)“除數(shù)是小數(shù)的除法”時(shí),先讓學(xué)生嘗試計(jì)算“247。因此在數(shù)學(xué)方法的思考過程中,應(yīng)深究數(shù)學(xué)的基本思想。(254)2200247。25=22(100247。25=2000247。方法2——6雖各有千秋,方法6運(yùn)用了數(shù)的分拆,方法2屬等值變換,方法5類似于估算中的“補(bǔ)償”策略,但殊途同歸,都是抓住數(shù)據(jù)特點(diǎn),運(yùn)用學(xué)過的運(yùn)算定律、性質(zhì)轉(zhuǎn)化為容易計(jì)算的問題。數(shù)學(xué)思想和方法本質(zhì)上就是一種應(yīng)用工具,只有在基礎(chǔ)知識(shí)教學(xué)中有意識(shí)的滲透數(shù)學(xué)思想方法才能實(shí)現(xiàn)學(xué)生領(lǐng)會(huì)、掌握并應(yīng)用數(shù)學(xué)基礎(chǔ)知識(shí)的目標(biāo),幫助學(xué)生提高思維水平,優(yōu)化思維品質(zhì),培養(yǎng)創(chuàng)新精神和實(shí)踐能力。新課程所倡導(dǎo)的“算法多樣化”的教學(xué)理念,就是讓學(xué)生在經(jīng)歷算法多樣化的學(xué)習(xí)過程中,通過對(duì)算法的歸納與優(yōu)化,深究背后的數(shù)學(xué)思想,最終能靈活運(yùn)用數(shù)學(xué)思想方法解決問題,讓數(shù)學(xué)思想方法逐步深入人心,內(nèi)化為學(xué)生的數(shù)學(xué)素養(yǎng)。25。25=2200247。5247。25”主要采用了以下幾種方法:豎式計(jì)算2200247。二、在方法思考中加強(qiáng)深究處理數(shù)學(xué)內(nèi)容要有一定的方法,但數(shù)學(xué)方法又受數(shù)學(xué)思想的制約。轉(zhuǎn)化是解決數(shù)學(xué)問題常用的思想方法。當(dāng)然,要使學(xué)生真正具備了有個(gè)性化的數(shù)學(xué)思想方法,并不是通過幾堂課就能達(dá)到,但是只要我們?cè)诮虒W(xué)中大膽實(shí)踐,持之以恒,寓數(shù)學(xué)思想方法于平時(shí)的教學(xué)中,學(xué)生對(duì)數(shù)學(xué)思想方法的認(rèn)識(shí)就一定會(huì)日趨成熟。歸納是代數(shù)教學(xué)的核心,歸納地想、歸納地發(fā)現(xiàn)規(guī)律作得多了,思想也就體現(xiàn)出來了。如果把若干個(gè)人之間握手總次數(shù)(單握)稱為“握手問題”,那么像無三點(diǎn)共線的n個(gè)點(diǎn)之間連線;共端點(diǎn)射線夾角(小于平角的角)個(gè)數(shù);一條線段上有若干個(gè)點(diǎn)形成的線段的條數(shù);足球隊(duì)之間單個(gè)循環(huán)比賽場次都可轉(zhuǎn)化為“握手問題”。轉(zhuǎn)化是將數(shù)學(xué)命題由一種形式向另一種形式的轉(zhuǎn)換過程。OD是∠AOB的平分線,OE是∠COB的平分線,并求出∠DOE的度數(shù)。從具體內(nèi)容上看,初中數(shù)學(xué)中實(shí)數(shù)的分類、三角形的分類、方程的分類等等,在教學(xué)中就需要啟發(fā)學(xué)生按不同的情況去對(duì)同一對(duì)象進(jìn)行分類,幫助他們掌握好分類的方法原則,形成分類的思想,從具體的教法上看,如對(duì)初一“有理數(shù)的加法”教學(xué)中,引導(dǎo)學(xué)生觀察、思考、探究,將有理數(shù)的加法分為三類進(jìn)行研究,正確歸納出有理數(shù)加法法則,這樣學(xué)生不僅掌握了具體的“法則”,而且對(duì)“分類”有了深刻的認(rèn)識(shí),那么在較為復(fù)雜的情況下,利用掌握好的分類的思想方法,正確地確定標(biāo)準(zhǔn),不重不漏地進(jìn)行分類,從而使看問題更加全面。如等式。如教材引入數(shù)軸后,就為數(shù)形結(jié)合思想奠定了基礎(chǔ)。要使學(xué)生把這種思想內(nèi)化成自己的觀點(diǎn),應(yīng)用它去解決問題,就要把各種知識(shí)所表現(xiàn)出來的數(shù)學(xué)思想適時(shí)作出歸納概括。再如:直線y=2x―1與y=m―x的交點(diǎn)在第三象限,求m的取值范圍。因此,在數(shù)學(xué)問題的探索的教學(xué)中重要的是讓學(xué)生真正領(lǐng)悟隱含于數(shù)學(xué)問題探索中的數(shù)學(xué)思想方法。顯然,由于以上引導(dǎo)展示了探索問題的整個(gè)思維過程所應(yīng)用的數(shù)學(xué)思想方法,因而較好地發(fā)揮了定理課和公式課在數(shù)學(xué)思想方法應(yīng)用上的教育和示范功能。再如:對(duì)于公式課的教學(xué)二元一次方程組的解法(1),本人在教學(xué)中引導(dǎo)學(xué)生分析出解二元一次方程組的各個(gè)步驟,認(rèn)識(shí)到最終使方程組變形為 “X=a,Y=b”的形式,即在保持各方程的左右兩邊相等關(guān)系的前提之下,使“求知”逐步轉(zhuǎn)化為“已知”。因此,在定理公式的教學(xué)中不要過早給出結(jié)論,而應(yīng)引導(dǎo)學(xué)生參與結(jié)論的探索、發(fā)現(xiàn)、推導(dǎo)過程。二、在定理和公式的探求中滲透數(shù)學(xué)思想方法著名數(shù)學(xué)家華羅庚說過
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1