【摘要】山東省新人教B版2021屆高三單元測試5必修2第二章《平面解析幾何初步》(本卷共150分,考試時間120分鐘)一、選擇題(本大題共12小題,在每小題給出的四個選項中,只有一項是符合題目要求的)1.直線3ax-y-1=0與直線(a-23)x+y+1=0垂直,則a的值是()A.-1或13
2024-12-09 15:48
【摘要】階段性檢測卷(二)(時間:120分鐘滿分:150分)一、選擇題(本大題共有10個小題,每小題5分,共50分)→+AC→-BC→+BA→,化簡后等于()A.3AB→→→→解析AB→+AC→-BC→+BA→
2024-12-05 01:55
【摘要】復(fù)習1、平面向量基本定理的內(nèi)容是什么?2、什么是平面向量的基底?如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,λ2使得a=λ1e1+λ2e2平面向量基本定理:不共線的平面向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.
2024-11-17 17:33
【摘要】平面向量數(shù)量積四大考點解析考點一.考查概念型問題例a、b、c是三個非零向量,則下列命題中真命題的個數(shù)()⑴??baab?ba//?;⑵ba,反向????baab?⑶??bababa???;⑷a=b???bacb?分析
2024-11-19 23:18
【摘要】撰稿教師:李麗麗學習目標1.了解平面向量基本定理,掌握平面向量基本定理及其應(yīng)用2.利用平面向量基本定理解決有關(guān)問題學習過程一、課前準備(預(yù)習教材96頁~98頁,找出疑惑之處)二、新課導(dǎo)學1、平行向量基本定理2、平面內(nèi)任一向量是否可以用兩個不共線的向量來表示。如圖,設(shè)2
2024-11-18 16:44
【摘要】平面向量的坐標運算(二)一、填空題1.已知三點A(-1,1),B(0,2),C(2,0),若AB→和CD→是相反向量,則D點坐標是________.2.若a=(2cosα,1),b=(sinα,1),且a∥b,則tanα=______.3.已知向量a=(2x+1,4),b=(2-x,3),若
2024-12-05 10:15
【摘要】章末過關(guān)檢測卷(二)第2章平面向量(測試時間:120分鐘評價分值:150分)一、選擇題(本大題共10小題,每小題5分,共50分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.(2021·遼寧卷)已知點A(1,3),B(4,-1),則與向量AB→同方向的單位向量
【摘要】第二章平面向量向量的概念及表示【學習目標】,理解平面向量的概念和向量的幾何表示;掌握向量的模、零向量、單位向量、平行向量、相等向量、共線向量的概念;并會區(qū)分平行向量、相等向量和共線向量;,使學生初步認識現(xiàn)實生活中的向量和數(shù)量的本質(zhì)區(qū)別;,培養(yǎng)學生認識客觀事物的數(shù)學本質(zhì)的能力?!緦W習重難點】重點:平行向量的概念和向量的幾何表示;難點:區(qū)分平行向量、相等向
2025-04-17 01:18
【摘要】第一頁,編輯于星期六:點三十三分。,2.3.4平面向量共線的坐標表示,第二頁,編輯于星期六:點三十三分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點三十三分。,第四頁,編輯于星期六:點...
2024-10-22 18:49
【摘要】向量在中學數(shù)學中的應(yīng)用由于向量具有幾何形式與代數(shù)形式的“雙重身份”,是中學數(shù)學知識的一個交匯點,從而使它成為解決數(shù)學問題的重要工具.因此,在教學中除了讓學生掌握“平面向量”本身的內(nèi)容外,還要重視培養(yǎng)學生應(yīng)用向量解決其它問題的意識和能力.本文舉例說明向量在中學數(shù)學中的應(yīng)用.1在平面幾何中的應(yīng)用例1求證:平面四邊形對角線的平方和
2024-11-19 20:36
【摘要】第一章三角函數(shù)三角函數(shù)sin()yAx????的圖像一、函數(shù)sin()yAx????的圖像及性質(zhì)課型A例1.函數(shù))43sin(???xy圖像的一個對稱中心的坐標是(B)A.(0,12??)B.(0,127??)C.(0,
2024-12-05 06:38
【摘要】考點解讀:平面向量的線性運算向量的線性運算是向量的基礎(chǔ)部分,考查主要在選擇題、填空題形式出現(xiàn),側(cè)重于對向量的基本概念、向量運算的關(guān)系的考查;在解答題中側(cè)重于向量與其他章節(jié)的綜合考查,預(yù)計高考中向量的內(nèi)容所占的比重還會較大.下面對平面向量的線性運算的考點作簡單的探究:考點一、平面向量基本概念的考查:例1、給出下列命題:⑴兩個向量,當且僅當它
2024-11-19 23:17
【摘要】復(fù)習例題講解小結(jié)回顧引入新課講解性質(zhì)講解課堂練習一般地,實數(shù)λ與向量a的積是一個向量,記作λa,它的長度和方向規(guī)定如下:(1)|λa|=|λ||a|(2)當λ0時,λa的方向與a方向相同;當λ0時,λa
2025-06-06 01:05
【摘要】向量在物理中的應(yīng)用舉例向量起源于物理,是從物理學中抽象出來的數(shù)學概念.物理學中的許多問題,如位移、速度、加速度等都可以利用向量來解決.用數(shù)學知識解決物理問題,首先要把物理問題轉(zhuǎn)化為數(shù)學問題,即根據(jù)題目的條件建立數(shù)學模型,再轉(zhuǎn)化為數(shù)學中的向量運算來完成.1.解決力學問題例1質(zhì)量為m的物體靜止地放在斜面上,斜面與水平面的夾角為?,求斜面對于物體
【摘要】平面向量基本定理1.設(shè)O點是平行四邊形ABCD兩對角線的交點,下列向量組中可作為這個平行四邊形所在平面上表示其他所有向量的基底的是()①AD→與AB→;②DA→與BC→;③CA→與DC→;④OD→與OB→.A.①②B.①③C.①④D.③④解析:只要是平面上不共線的兩個向量
2024-11-19 20:38