【摘要】第一篇:平面向量在高中數(shù)學(xué)教學(xué)中的作用 平面向量在高中數(shù)學(xué)教學(xué)中的作用 、定理、性質(zhì)及有關(guān)公式,可以簡(jiǎn)化解題過(guò)程,,本身這個(gè)運(yùn)算學(xué)生總最初接觸運(yùn)算都是數(shù)與數(shù)之間的運(yùn)算,而加入向量運(yùn)算之后,向量運(yùn)算...
2024-11-16 22:11
【摘要】平面向量知識(shí)點(diǎn)知識(shí)點(diǎn)歸納1、向量的概念:①向量:既有大小又有方向的量向量不能比較大小,但向量的??梢员容^大小.②零向量:長(zhǎng)度為0的向量,記為,其方向是任意的,與任意向量平行③單位向量:模為1個(gè)單位長(zhǎng)度的向量④平行向量(共線(xiàn)向量):方向相同或相反的非零向量⑤相等向量:長(zhǎng)度相等且方向相同的向量2、向量加法:設(shè),則+=
2025-08-11 11:08
【摘要】由于向量的線(xiàn)性運(yùn)算和數(shù)量積運(yùn)算具有鮮明的幾何背景,平面幾何的許多性質(zhì),如平移、全等、相似、長(zhǎng)度、夾角都可以由向量的線(xiàn)性運(yùn)算及數(shù)量積表示出來(lái),因此,利用向量方法可以解決平面幾何中的一些問(wèn)題。平面幾何中的向量方法例1、證明平行四邊形四邊平方和等于兩對(duì)角線(xiàn)平方和ABDC已知:平行四邊形ABCD。求證:
2025-08-01 17:29
【摘要】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修4《平面向量基本定理》教學(xué)目的?(1)了解平面向量基本定理;理解平面向量的坐標(biāo)的概念;?(2)初步掌握應(yīng)用向量解決實(shí)際問(wèn)題的重要思想方法;?(3)能夠在具體問(wèn)題中適當(dāng)?shù)剡x取基底,使其他向量都能夠用基底來(lái)表達(dá).?教學(xué)重點(diǎn):平面向量基本定理.
2024-11-12 18:20
【摘要】.第二章平面向量一、選擇題(第1題)1.在△ABC中,AB=AC,D,E分別是AB,AC的中點(diǎn),則().A.與共線(xiàn) B.與共線(xiàn)C.與相等 D.與相等2.下列命題正確的是().A.向量與是兩平行向量B.若a,b都是單位向量,則a=bC.若=,則A,B,C,D四點(diǎn)構(gòu)成
2025-08-04 23:56
【摘要】......高中數(shù)學(xué)(平面向量)綜合練習(xí)含解析1.在中,,.若點(diǎn)滿(mǎn)足,則()A.B.C.D.2.已知,,點(diǎn)C在內(nèi),且,,則等于()20090420A.
2025-04-04 05:05
【摘要】高中數(shù)學(xué)(平面向量)綜合練習(xí)含解析1.在中,,.若點(diǎn)滿(mǎn)足,則()A.B.C.D.2.已知,,點(diǎn)C在內(nèi),且,,則等于()20090420A.3B.C.D.3.若向量滿(mǎn)足,且,則()A.4B.3C.2
2025-06-07 23:55
【摘要】平面向量知識(shí)點(diǎn)總結(jié)第一部分:向量的概念與加減運(yùn)算,向量與實(shí)數(shù)的積的運(yùn)算。一.向量的概念:1.向量:向量是既有大小又有方向的量叫向量。2.?向量的表示方法:????(1)°幾何表示法:點(diǎn)—射線(xiàn)??????有向線(xiàn)段——具有一定方向的線(xiàn)段?
2025-04-04 05:08
【摘要】Oxya引入:,點(diǎn)A可以用什么來(lái)表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個(gè)不共線(xiàn)的向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線(xiàn)的兩向量e1,e2叫做這一平面內(nèi)所
2024-11-17 15:05
【摘要】課題平面向量基本定理教學(xué)目標(biāo)知識(shí)與技能理解平面向量基本定理的內(nèi)容,了解向量一組基底的含義過(guò)程與方法在平面內(nèi),當(dāng)一組基底選定后,會(huì)用這組基底來(lái)表示其他向量情感態(tài)度價(jià)值觀(guān)啟發(fā)引導(dǎo),講練結(jié)合重點(diǎn)會(huì)應(yīng)用平面向量基本定理解決有關(guān)平面向量的綜合問(wèn)題難點(diǎn)同上教學(xué)設(shè)
2024-11-19 20:38
【摘要】平面向量基本定理一、問(wèn)題情境(1)如何求此時(shí)豎直和水平方向速度?(2)利用什么法則?BAMN探究:給定平面內(nèi)兩個(gè)向量、,平面內(nèi)任一向量是否都可以在這兩向量方向上分解呢?分解平移共同起點(diǎn)OAB?鏈接幾何畫(huà)板平面向量基本定理
2024-11-12 17:12
【摘要】當(dāng)時(shí),0??與同向,ba且是的倍;||b||a?當(dāng)時(shí),0??與反向,ba且是的倍;||b||a||?當(dāng)時(shí),0??0b?,且。||0
2024-11-09 03:31
【摘要】"【志鴻全優(yōu)設(shè)計(jì)】2021-2021學(xué)年高中數(shù)學(xué)平面向量基本定理課后訓(xùn)練北師大版必修4"1.已知向量a=e1-2e2,b=2e1+e2.其中e1,e2不共線(xiàn),則a+b與c=6e1-2e2的關(guān)系是().A.不共線(xiàn)B.共線(xiàn)C.相等D.無(wú)法確定2.設(shè)
2024-12-03 03:14
【摘要】2.3向量的坐標(biāo)表示2.平面向量基本定理情景:“神舟”十號(hào)宇宙飛船在升空的某一時(shí)刻,速度可以分解成豎直向上和水平向前的兩個(gè)分速度.在力的分解的平行四邊形法則中,我們看到一個(gè)力可以分解為兩個(gè)不共線(xiàn)方向的力的和.思考:平面內(nèi)任一向量是否可以用兩個(gè)不共線(xiàn)的向量來(lái)表示呢?1.如果e1,e2是同一平面內(nèi)
2024-12-05 10:15
【摘要】課題:平面向量基本定理班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、了解平面向量基本定理;2、掌握平面向量基本定理及其應(yīng)用?!菊n前預(yù)習(xí)】1、共線(xiàn)向量基本定理一般地,對(duì)于兩個(gè)向量??baa,0?,如果有一個(gè)實(shí)數(shù)?,使_______
2024-11-19 21:43