【摘要】導數(shù)的概念引入:?在高臺跳水運動中,平均速度不能反映他在這段時間里運動狀態(tài),需要用瞬時速度描述運動狀態(tài)。我們把物體在某一時刻的速度稱為瞬時速度.又如何求瞬時速度呢?平均變化率近似地刻畫了曲線在某一區(qū)間上的變化趨勢.?如何精確地刻畫曲線在一點處的變化趨勢呢?)(2????ttth求:從
2024-11-18 12:15
【摘要】一:溫故知新處的導數(shù):在函數(shù)0)(.1xxxfy??處的導數(shù):在函數(shù)0)(.1xxxfy??xxfxxfxyxf????????)()(limlim)('0000??x0??x一:溫故知新的導函數(shù):函數(shù))(.2xfy?的導函數(shù):函數(shù))(.2xfy?xxfxxfyxfx?????
2025-03-12 14:54
【摘要】常見函數(shù)的導數(shù)教學過程Ⅰ.課題導入[師]我們上一節(jié)課學習了導數(shù)的概念,導數(shù)的幾何意義.我們是用極限來定義函數(shù)的導數(shù)的,我們這節(jié)課來求幾種常見函數(shù)的導數(shù).以后可以把它們當作直接的結論來用.Ⅱ.講授新課[師]請幾位同學上來用導數(shù)的定義求函數(shù)的導數(shù).=C(C是常數(shù)),求y′.[學生板演]解:y=f(x)=C,∴
2024-11-19 19:51
【摘要】利用導數(shù)研究函數(shù)的極值(二)一、基礎過關1.函數(shù)f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分別是()A.f(2),f(3)B.f(3),f(5)C.f(2),f(5)D.f(5),f(3)2.f(x)=x3-3x2+2在區(qū)間[-1,1]上的最大值
2024-11-19 10:30
【摘要】3.2.1幾個常用函數(shù)的導數(shù)學案學習目標1.能夠用導數(shù)的定義求幾個常用函數(shù)的導數(shù);2.利用公式解決簡單的問題。學習重點和難點[來1.重點:推導幾個常用函數(shù)的導數(shù);2.難點:推導幾個常用函數(shù)的導數(shù)。學習過程一.自學、思考、練習憶一憶?1、函數(shù)在一點處導數(shù)的定義;
2024-12-08 22:40
【摘要】高二數(shù)學備課組的絕對值平面內與兩個定點F1,F(xiàn)2的距離的差等于常數(shù)的點的軌跡叫做雙曲線.(小于︱F1F2︱)定義:oF2F1M12222??byax12222??b
2024-11-18 12:09
【摘要】利用導數(shù)研究函數(shù)的極值(一)一、基礎過關1.函數(shù)y=f(x)的定義域為(a,b),y=f′(x)的圖象如圖,則函數(shù)y=f(x)在開區(qū)間(a,b)內取得極小值的點有()A.1個B.2個C.3個D.4個2.下列關于函數(shù)的極值的
2024-12-03 11:30
【摘要】常見函數(shù)的導數(shù)(2)一、復習公式一:=0(C為常數(shù))C?公式二:)()(1是常數(shù)???????xx公式三:公式四:xxcos)(sin??xxsin)(cos???公式五:指數(shù)函數(shù)的導數(shù)(2)().xxee??(1)()ln(0,1)
2024-11-17 23:31
【摘要】§橢圓的簡單幾何性質課時安排5課時從容說課本節(jié)主要是通過對橢圓的標準方程的討論,研究橢圓的幾何性質,而這種依據(jù)曲線的方法去討論曲線的幾何性質是學習解析幾何以來的第一次,因此在教學中,不僅要注意對研究結果的理解和應用,而且應注意對研究方法的學習.由于學生己對由函數(shù)的解析式研究函數(shù)的性質或其圖象的特點比較熟悉,所以在學習由
2024-12-08 22:39
【摘要】課件制作者:羅定中學姚仕森橢圓的定義及其定理太空中有些天體運行的軌道是橢圓形的。生活中的橢圓油罐車的橫截面是橢圓數(shù)學實驗取一條細繩,把它的兩端固定在板上的兩點,把細繩拉緊,在板上慢慢移動用鉛筆尖奎屯王新敞新疆就可以畫出一個橢圓。橢圓及其標準方程2F1FM答:兩個定點,繩長.
2024-11-17 17:35
【摘要】1、求函數(shù)在某點的切線方程2、判斷單調性、求單調區(qū)間3、求函數(shù)的極值4、求函數(shù)的最值…導數(shù)主要有哪些方面的應用?應用一、判斷單調性、求單調區(qū)間函數(shù)的導數(shù)與函數(shù)的單調性之間的關系?判斷函數(shù)單調性的常用方法:(1)定義法(2)導數(shù)法1)如果在某區(qū)
2024-11-18 08:56
【摘要】舜耕中學高一數(shù)學選修1—1導學案(教師版)編號20等級:周次上課時間月日周課型新授課主備人胡安濤使用人課題教學目標,求函數(shù)單調區(qū)間,證明單調性。教學重點會熟練用求導,求函數(shù)單調區(qū)間,會從導數(shù)的角度解釋增減及增減快慢的情況教學難點證
2024-12-08 01:49
【摘要】導數(shù)在研究函數(shù)中的應用一般地,設函數(shù)y=f(x)的定義域為A,區(qū)間IA.?如果對于區(qū)間I內的任意兩個值x1、x2,當x1<x2時,都有f(x1)<f(x2),那么就說y=f(x)在區(qū)間I上是單調增函數(shù),I稱為y=f(x)的單調增區(qū)間.如果對于區(qū)間I內的任意兩個值x1、x2
【摘要】2020/12/25§(一)2020/12/25復習思考?、標準方程是什么??平面上到兩個定點的距離的和(2a)等于定長(大于|F1F2|)的點的軌跡叫橢圓。?定點F1、F2叫做橢圓的焦點。?兩焦點之間的距離叫做焦距(2c)。)0(12222????bab
【摘要】導數(shù)在研究函數(shù)中的應用——極大值與極小值一般地,設函數(shù)y=f(x),aby=f(x)xoyy=f(x)xoyab導數(shù)與函數(shù)的單調性的關系知識回顧1)如果在某區(qū)間上,那么f(x)為該區(qū)間上的增函數(shù),?f(x)02)如果在某區(qū)間上