【摘要】舜耕中學高一數(shù)學選修1—1導學案(教師版)編號20等級:周次上課時間月日周課型新授課主備人胡安濤使用人課題教學目標,求函數(shù)單調(diào)區(qū)間,證明單調(diào)性。教學重點會熟練用求導,求函數(shù)單調(diào)區(qū)間,會從導數(shù)的角度解釋增減及增減快慢的情況教學難點證
2025-11-29 01:49
【摘要】1、求函數(shù)在某點的切線方程2、判斷單調(diào)性、求單調(diào)區(qū)間3、求函數(shù)的極值4、求函數(shù)的最值…導數(shù)主要有哪些方面的應用?應用一、判斷單調(diào)性、求單調(diào)區(qū)間函數(shù)的導數(shù)與函數(shù)的單調(diào)性之間的關系?判斷函數(shù)單調(diào)性的常用方法:(1)定義法(2)導數(shù)法1)如果在某區(qū)
2025-11-09 08:56
【摘要】最大值、最小值問題一、最大值、最小值的求法二、應用一、最值的求法oxyoxybaoxyabab.],[)(],[)(在上的最大值與最小值存在個導數(shù)為零的點,則可導,并且至多有有限處上連續(xù),除個別點外處在若函數(shù)baxfbaxf步驟:;,比較大
2025-08-16 01:39
【摘要】函數(shù)的最大(小)值韶關市田家炳中學范永祥一、教材分析本課是人教版教材《數(shù)學1》。本課時主要學習函數(shù)的最大(?。┲档母拍?,探索函數(shù)最大(?。┲登蠼夥椒?。本節(jié)課是在學生學習了函數(shù)概念、單調(diào)性的基礎上所研究的函數(shù)的一個重要性質(zhì)。函數(shù)最大(?。┲档母拍钍茄芯烤唧w函數(shù)值域的依據(jù),對于學生進一步研究函數(shù)圖像性質(zhì),以及將來研究不等式問題有重要作用。函數(shù)最大(?。┲档难芯糠椒ㄒ簿?/span>
2025-04-16 23:39
【摘要】導數(shù)在實際生活中的應用新課引入:導數(shù)在實際生活中有著廣泛的應用,利用導數(shù)求最值的方法,可以求出實際生活中的某些最值問題..(面積和體積等的最值)(利潤方面最值)(功和功率等最值)例1:在邊長為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個無
2025-11-08 17:10
【摘要】江蘇省建陵高級中學2020-2020學年高中數(shù)學導數(shù)在研究函數(shù)在的應用(函數(shù)的極值)導學案(無答案)蘇教版選修1-1一:學習目標1.了解函數(shù)極值的概念,會從幾何直觀理解函數(shù)的極值與其導數(shù)的關系,并會靈活應用;2.了解可導函數(shù)在某點取得極值的必要條件和充分條件(導數(shù)在極值點兩側(cè)異號)。二:課前預習1.函數(shù)a
2025-11-11 00:30
【摘要】一、復習幾何意義:曲線在某點處的切線的斜率;(瞬時速度或瞬時加速度)物理意義:物體在某一時刻的瞬時度。2、由定義求導數(shù)(三步法)步驟:);()()1(xfxxfy?????求增量;)()()2(xxfxxfxy???????算比值)(,0)3(xfxyx????
2025-11-08 15:21
【摘要】幾種常見函數(shù)的導數(shù)求函數(shù)的導數(shù)的方法是:00(1)()();yfxxfx?????求函數(shù)的增量00(2):()();fxxfxyxx???????求函數(shù)的增量與自變量的增量的比值0(3)()lim.xyyfxx
2025-11-08 23:34
【摘要】(1)1、實際問題中的應用.在日常生活、生產(chǎn)和科研中,常常會遇到求函數(shù)的最大(小)值的問題.建立目標函數(shù),然后利用導數(shù)的方法求最值是求解這類問題常見的解題思路.在建立目標函數(shù)時,一定要注意確定函數(shù)的定義域.在實際問題中,有時會遇到函數(shù)在區(qū)間內(nèi)只有一個點使的情形,如果函數(shù)在這個點
【摘要】導數(shù)在實際生活中的應用教學過程:一、復習引入::一般地,設函數(shù)f(x)在點x0附近有定義,如果對x0附近的所有的點,都有f(x)<f(x0),就說f(x0)是函數(shù)f(x)的一個極大值,記作y極大值=f(x0),x0是極大值點奎屯王新敞新疆:一般地,設函數(shù)f(x)在x0附近有定義,如果對x0附近的所有的點
2025-11-29 13:49
【摘要】常見函數(shù)的導數(shù)教學過程Ⅰ.課題導入[師]我們上一節(jié)課學習了導數(shù)的概念,導數(shù)的幾何意義.我們是用極限來定義函數(shù)的導數(shù)的,我們這節(jié)課來求幾種常見函數(shù)的導數(shù).以后可以把它們當作直接的結(jié)論來用.Ⅱ.講授新課[師]請幾位同學上來用導數(shù)的定義求函數(shù)的導數(shù).=C(C是常數(shù)),求y′.[學生板演]解:y=f(x)=C,∴
2025-11-10 19:51
【摘要】知識回顧函數(shù)??xfy?在0xx?處的導數(shù)即為函數(shù)??xfy?在0xx?處的瞬時變化率,其幾何意義是曲線??xfy?在點??),(00xfx處切線的斜率。對于函數(shù)??xfy?,如果在某區(qū)間上??0'?xf,那么??xf為該區(qū)間上的增函數(shù);對于函數(shù)
2025-11-09 08:47
【摘要】常見函數(shù)的導數(shù)(2)一、復習公式一:=0(C為常數(shù))C?公式二:)()(1是常數(shù)???????xx公式三:公式四:xxcos)(sin??xxsin)(cos???公式五:指數(shù)函數(shù)的導數(shù)(2)().xxee??(1)()ln(0,1)
2025-11-08 23:31
【摘要】(1)基本不等式(2)基本不等式的最大值與最小值對于任意實數(shù)x,y,(x-y)2≥0總是成立的,即x2-2xy+y2≥0所以,當且僅當x=y時等號成立22x+y≥xy2如果a,b都是正數(shù),那么,當且僅當a=b時,等號成立.a+b≥ab2,,
2025-07-25 16:08