【摘要】導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用教學(xué)過程:一、復(fù)習(xí)引入::一般地,設(shè)函數(shù)f(x)在點(diǎn)x0附近有定義,如果對x0附近的所有的點(diǎn),都有f(x)<f(x0),就說f(x0)是函數(shù)f(x)的一個極大值,記作y極大值=f(x0),x0是極大值點(diǎn)奎屯王新敞新疆:一般地,設(shè)函數(shù)f(x)在x0附近有定義,如果對x0附近的所有的點(diǎn)
2025-11-29 13:49
【摘要】第3課時函數(shù)的最值.[a,b]上連續(xù)函數(shù)f(x)的最大值和最小值的思想方法和步驟..如圖,設(shè)鐵路線AB=50km,點(diǎn)C處與B之間的距離為10km,現(xiàn)將貨物從A運(yùn)往C,已知1km鐵路費(fèi)用為2元,1km公路費(fèi)用為4元,在AB上M處修筑公路至C,使運(yùn)費(fèi)由A到C最省,求
2025-11-10 23:17
【摘要】1§函數(shù)的極值與導(dǎo)數(shù)學(xué)習(xí)目標(biāo)、極小值,最大值和最小值的概念;、極小值的方法來求函數(shù)的極值;.和步驟.預(yù)習(xí)與反饋(預(yù)習(xí)教材P26~P31,找出疑惑之處)復(fù)習(xí)1:設(shè)函數(shù)y=f(x)在某個區(qū)間內(nèi)有導(dǎo)數(shù),如果在這個區(qū)間內(nèi)0y??,那么函數(shù)y=f(x)在這個區(qū)間內(nèi)為函
2025-11-11 03:14
【摘要】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》函數(shù)的和、差、積、商的導(dǎo)數(shù)(2)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):;2.能通過運(yùn)算法則求出導(dǎo)數(shù)并解決相應(yīng)問題。教學(xué)重點(diǎn):.靈活應(yīng)用函數(shù)的和、差、積、商的求導(dǎo)法則。教學(xué)難點(diǎn):準(zhǔn)確快速的對函數(shù)求導(dǎo)。課前預(yù)習(xí):問題1:基本初等函數(shù)的導(dǎo)數(shù)公式表:①若
2025-11-26 06:45
【摘要】奎屯王新敞新疆知識回顧1、一般地,設(shè)函數(shù)y=f(x)在某個區(qū)間內(nèi)可導(dǎo),則函數(shù)在該區(qū)間如果f′(x)0,如果f′(x)0,則f(x)為增函數(shù);則f(x)為減函數(shù).2、用導(dǎo)數(shù)法確定函數(shù)的單調(diào)性時的步驟是:(1)(3)求
2025-11-08 17:38
【摘要】導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用新課引入:導(dǎo)數(shù)在實(shí)際生活中有著廣泛的應(yīng)用,利用導(dǎo)數(shù)求最值的方法,可以求出實(shí)際生活中的某些最值問題..(面積和體積等的最值)(利潤方面最值)(功和功率等最值)例1:在邊長為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個無
2025-11-08 17:10
2025-11-09 08:47
【摘要】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)常見函數(shù)的導(dǎo)數(shù)課后知能檢測蘇教版選修1-1一、填空題1.已知f(x)=1x3,則f′(1)=________.【解析】∵f(x)=1x3=x-3,∴f′(x)=-3x-4,∴f′(1)=-3×1-4=-3.【答案】
2025-11-25 20:01
【摘要】?函數(shù)的和、差、積、商的導(dǎo)數(shù)為常數(shù))????(x)x)(2(1'??1)a0,lna(aa)a)(3(x'x???且1)a,0a(xlna1)xlog)(4('a???且sinx(8)(cosx)
【摘要】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用—極大值與極小值(2)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):1、進(jìn)一步鞏固應(yīng)用導(dǎo)數(shù)求函數(shù)極值的方法2、應(yīng)用極值解決求參數(shù)的有關(guān)問題。重點(diǎn):應(yīng)用極求參數(shù)及參數(shù)范圍問題課前預(yù)學(xué):1、函數(shù))0(??xxeyx的極小值為
2025-11-26 06:44
【摘要】函數(shù)的極值【學(xué)習(xí)要求】了解函數(shù)極值的定義,會從幾何圖形直觀理解函數(shù)的極值與其導(dǎo)數(shù)的關(guān)系,增強(qiáng)自己的數(shù)形結(jié)合意識;掌握利用導(dǎo)數(shù)求函數(shù)的極值的一般步驟.【提問引入】請同學(xué)們觀察下圖.極值的概念:
2025-11-26 06:34
【摘要】第5課時函數(shù)與導(dǎo)數(shù)的綜合性問題分析、極值、最值、參數(shù)等問題.、函數(shù)、不等式等知識的綜合.“知識網(wǎng)絡(luò)交匯點(diǎn)”處命題,合理設(shè)計(jì)綜合多個知識點(diǎn)的試題,考查分類討論、數(shù)形結(jié)合等數(shù)學(xué)思想方法.函數(shù)與導(dǎo)數(shù)是高中數(shù)學(xué)的核心內(nèi)容,函數(shù)思想貫穿中學(xué)數(shù)學(xué)全過程.導(dǎo)數(shù)作為工具,提供了研究函數(shù)性質(zhì)的一般性方法.作為
2025-11-25 23:43
【摘要】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》函數(shù)的和、差、積、商的導(dǎo)數(shù)(2)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):1.理解兩個函數(shù)的積的導(dǎo)數(shù)法則、和(或差)的導(dǎo)數(shù)法則,學(xué)會用法則求復(fù)雜形式的函數(shù)的導(dǎo)數(shù)教學(xué)重點(diǎn):靈活應(yīng)用函數(shù)的和、差、積、商的求導(dǎo)法則教學(xué)難點(diǎn):函數(shù)的積、商的求導(dǎo)法則的綜合應(yīng)用.
【摘要】(1)1、實(shí)際問題中的應(yīng)用.在日常生活、生產(chǎn)和科研中,常常會遇到求函數(shù)的最大(小)值的問題.建立目標(biāo)函數(shù),然后利用導(dǎo)數(shù)的方法求最值是求解這類問題常見的解題思路.在建立目標(biāo)函數(shù)時,一定要注意確定函數(shù)的定義域.在實(shí)際問題中,有時會遇到函數(shù)在區(qū)間內(nèi)只有一個點(diǎn)使的情形,如果函數(shù)在這個點(diǎn)
2025-11-09 08:56
【摘要】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用單元測試一、選擇題1.下列函數(shù)在()??,∞∞內(nèi)為單調(diào)函數(shù)的是()A.2yxx??B.yx?C.xye??D.sinyx?答案:C2.函數(shù)lnyxx?在區(qū)間(01),上是()A.單調(diào)增函數(shù)B.單調(diào)減函數(shù)C.在10e
2025-11-23 10:14