【摘要】第2課時基本不等式的應用1.復習鞏固基本不等式.2.能利用基本不等式求函數(shù)的最值,并會解決有關(guān)的實際應用問題.121.重要不等式a2+b2≥2ab(1)證明:課本應用了圖形間的面積關(guān)系推導出了a2+b2≥2ab,也可用分析法證明如下:要證明a2+b
2024-11-18 08:10
【摘要】溫故知新1、比較兩實數(shù)大小的常用方法△=b2-4ac△0△=0△0)的圖象ax2+bx+c=0(a0)的根ax2+bx+0(a0)的解集ax2+bx+c0(a&
2024-11-17 17:33
【摘要】基本不等式以培養(yǎng)學生探究精神為出發(fā)點,著眼于知識的生成和發(fā)展,著眼于學生的學習體驗,設(shè)置問題,由淺入深、循序漸進,給不同層次的學生提供思考、創(chuàng)造和成功的機會。特進行如下教學設(shè)計:(一)設(shè)問激疑,創(chuàng)設(shè)情景展示北京召開的第24屆國際數(shù)學家大會的會標,讓學生思考,圖案由哪些幾何圖形拼湊而成,由此你能否找到一些相等或不等關(guān)系?接著通過三個問題
2024-12-08 20:20
【摘要】淄川般陽中學洪貴云基本不等式:(說課)2baab??教材分析教法分析教學目標教學過程設(shè)計說明一.教材分析(一)教材的地位和作用(二)課時安排一.教材分析(一)教材的地位和作用基本不等式
2025-08-04 23:52
【摘要】基本不等式??.,,,,并給出證明以定理的形式給出下面將它為了方便同學們學習不等式要重過學經(jīng)我們已Rbaabba???222.,,,,等號成立時且僅當當那么如果定理baabbaRba????2122??.,,,,成立等號時當且僅當所以時等號成立當且僅因為證明bababaabb
2025-08-05 17:11
【摘要】《基本不等式》一、內(nèi)容與內(nèi)容解析本節(jié)課是《普通高中課程標準實驗教科書數(shù)學》人教A版必修5第三章《不等式》中《基本不等式》的第一課時,主要內(nèi)容是探索基本不等式的生成和證明過程及其簡單的應用.本節(jié)內(nèi)容具有變通性、應用性的特點,它與線性規(guī)劃呈并列結(jié)構(gòu),可用來求某些函數(shù)的值域和最值,也可解決實際生活中的最優(yōu)化配置問題.本節(jié)內(nèi)容由兩部分構(gòu)成,其一是
2024-12-08 07:03
【摘要】綜合法與分析法二.,.,的結(jié)論推導出所要證明通過邏輯推理出發(fā)基本不等式等條件和不等式的性質(zhì)、我們經(jīng)常從已知明中等式的證在不??????.,,,,abcbacacbcbacba601222222???????求證且不全相等已知例..,,采用如下方法這種結(jié)構(gòu)特點啟發(fā)我們倍的積的右邊是三個數(shù)之積的平方之和和
2024-11-17 12:00
【摘要】思考:該結(jié)論可推廣到三個正數(shù),四個正數(shù),…,甚至n個正數(shù)嗎?002,,..abababab?????若則等號當且僅當時成立2,,,,,.ababababab?
2025-07-23 15:42
2025-07-24 11:43
2025-07-24 14:01
【摘要】絕對值不等式的解法復習:X=0|x|=X0x0X3的解觀察、思考:不等式│x│<
2025-07-23 17:21
2025-07-24 16:57
2025-07-24 14:49
2025-07-23 12:42
2025-07-24 16:29