【摘要】《不等關(guān)系與不等式》教學(xué)目標(biāo)?1.使學(xué)生感受到在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,在學(xué)生了解了一些不等式(組)產(chǎn)生的實(shí)際背景的前提下,能列出不等式與不等式組.?2.學(xué)習(xí)如何利用不等式表示不等關(guān)系,利用不等式的有關(guān)基本性質(zhì)研究不等關(guān)系;?3.通過(guò)學(xué)生在學(xué)習(xí)過(guò)程中的感受、體驗(yàn)、認(rèn)識(shí)狀況及理解程度,注重問(wèn)題情境、實(shí)際背景的設(shè)置,
2025-03-13 05:16
【摘要】均值不等式的應(yīng)用(求最值)回顧一下重要不等式:均值不等式:222abab??(,0)2ababab???幾個(gè)重要的變形:2(0,0)ababab????2(,0)2ababab?????????222()(,)22a
2024-11-18 08:48
【摘要】3.4不等式的實(shí)際應(yīng)用學(xué)習(xí)目標(biāo)理.2.重點(diǎn)是不等式的實(shí)際應(yīng)用.3.難點(diǎn)是建立不等式問(wèn)題模型,解決實(shí)際問(wèn)題.課堂互動(dòng)講練知能優(yōu)化訓(xùn)練不等式的實(shí)際應(yīng)用課前自主學(xué)案3.4課前自主學(xué)案溫故夯基1.作差比較法可以比較兩數(shù)(式)的大小,也可證明不等式.
2025-01-06 16:33
【摘要】基本不等式:第1課時(shí)基本不等式1.理解并掌握基本不等式及其推導(dǎo)過(guò)程,明確基本不等式成立的條件.2.能利用基本不等式求代數(shù)式的最值.121.重要不等式當(dāng)a,b是任意實(shí)數(shù)時(shí),有a2+b2≥2ab,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立.(1)公式中a,b的取值是
2024-11-17 19:03
【摘要】......基本不等式習(xí)專題之基本不等式做題技巧【基本知識(shí)】1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(4)當(dāng)且僅當(dāng)
2025-05-13 23:45
【摘要】知識(shí)回顧三個(gè)兩次模塊回顧練習(xí)010340323107320144112222????????????xxxxxxxx.)()()()(求不等式的解集????。,求丨,丨已知集合 BAxxxBxxA.?034016222????
2024-11-17 23:16
【摘要】第一篇:高三數(shù)學(xué)均值不等式 3eud教育網(wǎng)://百萬(wàn)教學(xué)資源,完全免費(fèi),無(wú)須注冊(cè),天天更新! 均值不等式教案 教學(xué)目標(biāo): 教學(xué)重點(diǎn): 推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)...
2024-11-06 22:00
【摘要】均值不等式主講人:宋國(guó)鳴北京師范大學(xué)良鄉(xiāng)附屬中學(xué)中學(xué)數(shù)學(xué)高一新授課創(chuàng)設(shè)情境?校園內(nèi)有一個(gè)邊長(zhǎng)分別為a和b的矩形花壇,以及三個(gè)正方形花壇,?①第一個(gè)正方形花壇與矩形花壇的周長(zhǎng)相等,設(shè)它的邊長(zhǎng)為;?②第二個(gè)正方形花壇與矩形花壇的面積相等,設(shè)它的邊長(zhǎng)為;?③第三個(gè)正方形
2024-11-23 13:02
【摘要】高次不等式和分式不等式的解法一.高次不等式的解法對(duì)于不等式(x-a1)(x-a2)(x-an)0的解法是穿根標(biāo)線法a1a2an例1解下列不等式:(1)(x+1)(x-1)(x-2)0(2)x(x-1)2(x+1)3(x+2)0(3)(x-3)(x
【摘要】第一篇:均值不等式應(yīng)用 均值不等式應(yīng)用 一.均值不等式 22a+b1.(1)若a,b?R,則a+b32ab(2)若a,b?R,則ab£a=b時(shí)取“=”)22 22.(1)若a,b?R*,則a+...
2024-11-05 18:14
【摘要】?復(fù)習(xí)??a-b0ab?a-b=0a=b?a-bab?:?(1)比較兩個(gè)實(shí)數(shù)的大小,(2)推導(dǎo)不等式的性質(zhì),(3)不等式的證明,(4)解不等式的主要依據(jù)?
【摘要】第一篇:均值不等式證明 均值不等式證明 一、已知x,y為正實(shí)數(shù),且x+y=1求證 xy+1/xy≥17/ 41=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥ 2當(dāng)且僅當(dāng)xy=...
2024-11-05 18:15
【摘要】第一篇:均值不等式教案 3.2均值不等式教案(3) (第三課時(shí)) 教學(xué)目標(biāo): 了解均值不等式在證明不等式中的簡(jiǎn)單應(yīng)用 教學(xué)重點(diǎn): 了解均值不等式在證明不等式中的簡(jiǎn)單應(yīng)用 教學(xué)過(guò)程 例 ...
2024-11-05 18:41
【摘要】Mathwang幾個(gè)經(jīng)典不等式的關(guān)系一幾個(gè)經(jīng)典不等式(1)均值不等式設(shè)是實(shí)數(shù),等號(hào)成立.(2)柯西不等式設(shè)是實(shí)數(shù),則當(dāng)且僅當(dāng)或存在實(shí)數(shù),使得時(shí),等號(hào)成立.(3)排序不等式設(shè),為兩個(gè)數(shù)組,是的任一排列,則當(dāng)且僅當(dāng)或時(shí),等號(hào)成立.(4)切比曉夫不等式對(duì)于兩個(gè)數(shù)組:,,有當(dāng)且僅當(dāng)或時(shí),等號(hào)成立.二相關(guān)證明(1)用排
2025-04-17 08:24
【摘要】第三章不等式課題:§不等式與不等關(guān)系第1課時(shí)授課類型:新授課【教學(xué)目標(biāo)】1.知識(shí)與技能:通過(guò)具體情景,感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,理解不等式(組)的實(shí)際背景,掌握不等式的基本性質(zhì);2.過(guò)程與方法:通過(guò)解決具體問(wèn)題,學(xué)會(huì)依據(jù)具體問(wèn)題的實(shí)際背景分析問(wèn)題、解決問(wèn)題的方法;3.情態(tài)與
2024-11-19 20:24