【摘要】“平面向量”誤區(qū)警示“平面向量”概念繁多容易混淆,對(duì)于初學(xué)者更是一頭霧水.現(xiàn)將與平面向量基本概念相關(guān)的誤區(qū)整理如下.⑴向量就是有向線段解析:向量常用一條有向線段來(lái)表示,有向線段的長(zhǎng)度表示向量的大小,箭頭所指的方向表示向量的方向.有向線段是向量的一種表示方法,不能說(shuō)向量就是有向線段.⑵若向量與相等,則有向線段AB與CD重合解析:長(zhǎng)度相等且方向相同的向量叫做相等向量.因此,
2025-04-16 23:21
【摘要】......平面向量數(shù)量積運(yùn)算題型一 平面向量數(shù)量積的基本運(yùn)算例1 (1)(2014·天津)已知菱形ABCD的邊長(zhǎng)為2,∠BAD=120°,點(diǎn)E,F(xiàn)分別在邊BC,DC上,BC=3BE,DC=·=1,則λ的值為
2025-06-25 14:47
【摘要】第三節(jié)平面向量的數(shù)量積及平面向量應(yīng)用舉例解分析用數(shù)量積和模的定義以及運(yùn)算性質(zhì),逐題計(jì)算.79642)(||)4(3427158||3120cos||||5||2352)3()2)(3(.594||||2.32132120cos||||12222o2222222o???????????
2024-11-11 09:01
【摘要】坐標(biāo)表示、模、夾角復(fù)習(xí)引入1.平面向量的數(shù)量積(內(nèi)積)的定義:復(fù)習(xí)引入1.平面向量的數(shù)量積(內(nèi)積)的定義:.)(cos||||或內(nèi)積的數(shù)量積與叫做,我們把數(shù)量夾角為它們的,和已知兩個(gè)非零向量bababa??復(fù)習(xí)引入1.平面向量的數(shù)量積
2024-10-18 14:26
【摘要】平面向量數(shù)量積的坐標(biāo)表示四川省沐川中學(xué)劉少民平面向量數(shù)量積復(fù)習(xí)a和b,它們的夾角為θ,則a&
2024-11-09 05:07
【摘要】精品資源普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書—數(shù)學(xué)[人教版]高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座26)—平面向量的數(shù)量積及應(yīng)用一.課標(biāo)要求:1.平面向量的數(shù)量積①通過(guò)物理中"功"等實(shí)例,理解平面向量數(shù)量積的含義及其物理意義;②體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系;③掌握數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面向量數(shù)量積的運(yùn)算;④能運(yùn)用數(shù)量積表示兩個(gè)向量的夾角,會(huì)用數(shù)
2025-06-29 17:37
【摘要】平面向量數(shù)量積求解的三種途徑平面向量數(shù)量積是平面向量一章中的重要內(nèi)容,是高中數(shù)學(xué)三角函數(shù)、平面幾何、解析幾何等章節(jié)知識(shí)的交匯點(diǎn),也是高考重點(diǎn)考查的知識(shí).許多學(xué)生在解此類題時(shí)感覺困難,究其原因,就是學(xué)生對(duì)數(shù)量積的概念理解不透徹.下面就求解方法歸納如下:一.定義法例1 已知直線與圓交于兩點(diǎn),是坐標(biāo)原點(diǎn),求的值.分析 向量,的模都是2,由直線與圓相交時(shí)弦心距、半
2025-06-19 23:26
【摘要】《平面向量數(shù)量積的坐標(biāo)表示、模、夾角》說(shuō)課稿 一、教材分析 :平面向量數(shù)量積的坐標(biāo)表示,就是運(yùn)用坐標(biāo)這一量化工具表達(dá)向量的數(shù)量積運(yùn)算,為研究平面中的距離、垂直、角度等問(wèn)題提供了全新的手段。它把向量...
2024-12-03 02:07
【摘要】平面向量數(shù)量積運(yùn)算題型一 平面向量數(shù)量積的基本運(yùn)算例1 (1)(2014·天津)已知菱形ABCD的邊長(zhǎng)為2,∠BAD=120°,點(diǎn)E,F(xiàn)分別在邊BC,DC上,BC=3BE,DC=·=1,則λ的值為________.(2)已知圓O的半徑為1,PA,PB為該圓的兩條切線,A,B為切點(diǎn),那么·的最小值為( )A.-4+ B.-3+C.-
2025-06-25 14:57
【摘要】平面向量數(shù)量積的坐標(biāo)表示、模、夾角一.復(fù)習(xí)回顧:?jiǎn)栴}:回憶一下,向量的數(shù)量積?又如何用數(shù)量積、長(zhǎng)度來(lái)反映夾角?向量的運(yùn)算律有哪些?平面向量的數(shù)量積有那些性質(zhì)?答案:babababa????????cos,cos運(yùn)算律有:)()().(2bababa????????abba??
2025-01-20 04:59
【摘要】4.平面向量的基本定理、平面向量的坐標(biāo)表示及平面向量的坐標(biāo)運(yùn)算.5.平面向量的數(shù)量積及向量的應(yīng)用.1.向量的概念,向量的幾何表示,共線向量的概念.2.向量的加法、減法法則.3.實(shí)數(shù)與向量的積、兩個(gè)向量共線的充要條件.3.掌握平面向量的數(shù)量積及其幾何意義,能用平面向量的數(shù)量積處理有關(guān)長(zhǎng)度、角度和垂直的
2025-05-19 17:09
【摘要】a和b,它們的夾角為θ,則a·b=abcos.a·b稱為向量a與b的數(shù)量積(或內(nèi)積).θa·b等于a的長(zhǎng)度a與b在a的方向上的投影bcos的乘積.θ6.a·b≤ab.3.a⊥
2024-11-10 08:35
【摘要】平面向量數(shù)量積的坐標(biāo)表示、模、夾角.),1,1(),32,1(1?的夾角與求已知例baba????例2已知A(1,2),B(2,3),C(-2,5),試判斷?ABC的形狀,并給出證明.練習(xí)(1)已知=(4,3),向量是垂直于的單位向量,求.abab
2025-04-24 09:59
【摘要】第3講平面向量的數(shù)量積A級(jí)基礎(chǔ)演練(時(shí)間:30分鐘滿分:55分)一、選擇題(每小題5分,共20分)1.若向量a=(3,m),b=(2,-1),a·b=0,則實(shí)數(shù)m的值為().A.-32C.2D.6解析由a·b=3
2024-12-08 08:09
【摘要】向量數(shù)量積的物理背景與定義復(fù)習(xí)回顧x1+x2y1+y2x1-x2y1-y2λx1λy11、若向量a=(x1,y1),b=(x2,y2)則向量a+b=(,)
2024-11-09 23:29