【摘要】第一篇:《函數的奇偶性》教案 《函數的奇偶性》 一、教材分析 1.教材所處的地位和作用 “奇偶性”是人教A版第一章“集合與函數概念”的第3節(jié)“函數的基本性質”的第2小節(jié)。 奇偶性是函數的一條...
2024-10-28 15:46
【摘要】第一篇:函數的奇偶性說課稿 函數的奇偶性(說課稿) 同心縣回民中學馬萬 各位老師,大家好!今天我說課的課題是高中數學人教A版必修一第一章第三節(jié)”函數的基本性質”中的“函數的奇偶性”,下面我將從教...
2024-10-28 16:52
【摘要】曹家大院某院晉祠鼓樓晉祠碩亭太谷民居門墩石獅子請你欣賞xyoxyo2)(xxf?xxf?)(觀察下列兩個函數圖象并思考以下問題:(1)這兩個函數圖象有什么共同特征嗎?(2)相應的兩個函數值對應表是如何體現這些特征的?
2024-11-22 01:56
【摘要】f(x)=x2,求f(-2),f(2),f(-1),f(1),及f(-x),并畫出它的圖象。解:f(-2)=(-2)2=4f(2)=4f(-1)=(-1)2=1f(1)=1f(-x)=(-x)2=x2f(-2)=f(2)f(-1)=f(1)f(-x)=f(x)-xxf(-x)f(x)xy
2025-08-16 01:30
【摘要】函數的奇偶性y=x2-xx當x1=1,x2=--1時,f(-1)=f(1)當x1=2,x2=--2時,f(-2)=f(2)對任意x,f(-x)=f(x)xy1?偶函數定義:如果對于函數定義域內的任意一個x,都有f(-x)=f(x)。那么f(x)就叫偶函數。奇函數定義:如果對于
2024-11-18 13:34
【摘要】xy0觀察下圖,思考并討論以下問題:(1)這兩個函數圖象有什么共同特征嗎?(2)相應的兩個函數值對應表是如何體現這些特征的?f(-3)=9=f(3)f(-2)=4=f(2)f(-1)=1=f(1)f(-3)=3=f(3)f(-2)=2=f(2)f(-1)=1=f(1)f(x)=x2f(x)
2024-11-17 07:49
【摘要】函數的單調性和奇偶性(一)閱讀課本P58-P59,回答下列問題1、增函數,減函數的定義;2、單調性,單調區(qū)間的定義.3、函數圖象如下圖,說出單調區(qū)間及其單調性.xy練習一1、求下列函數的單調區(qū)間(1)f(x)=x-1;(2)f(x)=-2x+3;(3)f(x)=2x2-x+2(4)f(x)=-x2-
2024-11-06 20:13
2025-08-15 20:29
【摘要】xy0觀察下圖,思考并討論以下問題:(1)這兩個函數圖象有什么共同特征嗎?(2)相應的兩個函數值對應表是如何體現這些特征的?f(-3)=9=f(3)f(-2)=4=f(2)f(-1)=1=f(1)f(-3)=3=f(3)f(-2)=2=f(2)f(-1)=1=f(1)f(x)=x2f(x)=|x|
2024-11-21 02:08
【摘要】LOGO奇偶性詹嘉玲奇偶性觀察與思考奇偶性觀察與思考圖像關于y軸對稱圖像關于原點對稱奇偶性你發(fā)現什么規(guī)律?圖像關于y軸對稱的函數xf(x)11-1124-24-3939f(1)f(-1)
2024-11-21 04:24
【摘要】函數的奇偶性一、對稱區(qū)間(關于原點對稱)[a,b]關于原點的對稱區(qū)間為[-b,-a](-∞,0)關于原點的對稱區(qū)間為(0,+∞)[-1,1]關于原點的對稱區(qū)間為[-1,1]二、奇函數與偶函數(一)奇函數的定義:對于任意函數f(x)在其對稱區(qū)間(關于原點對稱)內,對于x∈A,都有f(-x)=-f(x),則f(x)為奇函數。(二)偶函數的定義:對于任意函數f(x)
2025-04-16 12:09
【摘要】③函數奇偶性概念復習材料一知識點1函數奇偶性①一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做奇函數.②一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數.2具有奇偶性的函數圖象的特征:偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱3利用定義判斷函數奇偶性的格式步驟:①首先確定函數
2025-01-14 09:13
【摘要】第一篇:函數的奇偶性教案(精選) 金太陽新課標資源網 函數的奇偶性(1) 函數的奇偶性實質就是函數圖象的對稱性,,一是根據定義來判斷,,,在“函數的奇偶性”這一節(jié)中,“數”與“形”,本節(jié)課沒...
2024-10-28 18:11
【摘要】函數的奇偶性教學反思 函數的奇偶性教學反思篇1 一.多媒體使用的思考: ?。撼浞挚紤]多媒體的必用性和實用性,如實例引入,借助一些圖片,讓學生更形象的看到對稱。例題展現、問題展現,節(jié)約了...
2024-12-03 22:27
【摘要】一、教材分析本節(jié)課是高普通高中課程標準試驗教科書人教A版數學必修一第一章第三節(jié)第二小節(jié)函數的奇偶性。本節(jié)內容屬于函數領域的知識,是學生學過的函數概念的延續(xù)和拓展,又是后續(xù)研究其他具體函數的基礎,是在高中數學起承上啟下作用的核心知識之一。二、學情分析在此之前,學生已經學習了圖形的軸對稱和中心對稱,以及函數的單調性,這為本節(jié)課的學習起著鋪墊作用。從學生思維發(fā)展來看,高
2025-04-16 23:39