【摘要】二次函數(shù)復(fù)習注意:當二次函數(shù)表示某個實際問題時,還必須根據(jù)題意確定自變量的取值范圍.:形如y=ax2+bx+c(a,b,c是常數(shù),a≠0)的函數(shù)叫做二次函數(shù)自變量x的取值范圍是:任意實數(shù):(1)二次函數(shù)的一般形式:函數(shù)y=ax2+bx+c(a≠0)注意:它的特殊形式:當b=0,c
2024-11-21 23:05
【摘要】二次函數(shù)y=ax2+k圖象復(fù)習二次函數(shù)y=ax2的圖象是什么形狀呢?什么確定y=ax2的性質(zhì)?通常怎樣畫一個函數(shù)的圖象?我們來畫最簡單的二次函數(shù)y=2x2的圖象。還記得如何用描點法畫一個函數(shù)的圖象嗎?x…-2-1012…
2024-11-21 00:05
【摘要】二次函數(shù)y=ax2+bx+c圖象和性質(zhì)(4)xyoy=ax2y=ax2+ky=a(x–h)2y=a(x–h)2+k上下平移左右平移上下平移左右平移在上述移動中圖象的開口方向、形狀、頂點坐標、對稱軸,哪些有變化?哪些沒有變化?有變化的:拋
2024-11-20 23:47
【摘要】府谷三中高一數(shù)學(xué)教案(必修1)執(zhí)教人王雷娜教學(xué)自評:優(yōu)良中差課題二次函數(shù)的性質(zhì)主備人張鵬審核人蘇振民課時3教學(xué)時間2012年月日(第周第6節(jié))三維目標1、知識與技能根據(jù)一元二次函數(shù)的頂點式確定對稱軸、頂點坐標、單調(diào)區(qū)間、最值。2、過程與
2025-06-07 14:06
【摘要】二次函數(shù)的圖像與性質(zhì)(一)第二十四講,求二次函數(shù)的解析式:⑴已知拋物線的頂點坐標為(-1,-2),且通過點(1,10).⑵已知拋物線經(jīng)過(2,0),(0,-2),(-2,3)三點.⑶已知拋物線與x軸交點的橫坐標為-2和1,且通過點(2,8).Oy-11x2、已知二次函數(shù)y=
2024-11-19 08:00
【摘要】二次函數(shù)的圖象和性質(zhì)二次函數(shù)y=a(x-h)的圖象和性質(zhì)(2)倍速課時學(xué)練探究畫出二次函數(shù)的圖象,并考慮它們的開口方向、對稱軸和頂點.x·&
【摘要】二次函數(shù)的圖象和性質(zhì)2淡村鎮(zhèn)初級中學(xué)劉楓y=-2x2的圖象,并指出它的開口方向、對稱軸以及頂點坐標。y=2x2的圖象,并指出它的開口方向、對稱軸以及頂點坐標。y=ax2的圖象,并指出它的開口方向、對稱軸以及頂點坐標。a0,開口向上a0,開口向下對稱軸為y軸頂點坐標為(0,0)
2024-11-22 02:30
【摘要】二次函數(shù)的圖象和性質(zhì)(1)陂西中學(xué)鄧新騰拋物線和y=ax2+k的圖像與性質(zhì)?y=ax2y=ax2+ka>0a<0圖象開口對稱軸頂點最值增減性開口向上
【摘要】函數(shù)開口方向?qū)ΨQ軸頂點坐標y=ax2(a0)y=ax2+k(a0)y=ax2(a0)y=ax2+k(a0)向上向上向下向下y軸y軸y軸y軸(0、0)(0、0)(0、k)(0、k)函數(shù)開
2024-12-08 10:11
【摘要】......二次函數(shù)的圖象與基本性質(zhì)(一)、知識點回顧【知識點一:二次函數(shù)的基本性質(zhì)】y=ax2y=ax2+ky=a(x-h(huán))2y=a(x-h(huán))2+ky=ax2+bx+c開口方向頂點
2025-06-23 21:41
【摘要】 《二次函數(shù)圖像的性質(zhì)》聽課反思 預(yù)備鈴響之前我到達了十二班,劉瓊老師正在黑板上畫直角坐標系,學(xué)生在預(yù)習,班里整體上處于上課的狀態(tài)...... 首先出示了學(xué)習目標:=x2的圖像是一...
2025-04-03 05:08
【摘要】y=x2+c的圖象是什么?答:是拋物線?請?zhí)顚懴卤恚汉瘮?shù)開口方向?qū)ΨQ軸頂點坐標Y的最值增減性在對稱軸左側(cè)在對稱軸右側(cè)y=ax2a>0a<0y=ax2+ca>0a<0向上Y軸(0,0)最小值是0Y隨x的增大而減小Y隨x的增
2024-11-21 00:15
【摘要】二次函數(shù)y=a(x-h)2+k的圖象及其性質(zhì)1說出下列函數(shù)圖象的開口方向,對稱軸,頂點,最值和增減變化情況:1)y=ax22)y=ax2+c3)y=a(x-h)2將拋物線y=ax2沿y軸方向平移c個單位,得拋物線
2024-11-21 02:34
【摘要】(3)y=ax2+bx+c復(fù)習1、拋物線可以由拋物線向平移個單位,再向平移個單位而得到。5)2(72????xy27xy??5)2(72????xy右2下5歸納