【摘要】必修5第一章解三角形1.正弦定理::在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等,并且都等于外接圓的直徑,即(其中R是三角形外接圓的半徑):1).2)化邊為角:;3)化邊為角:4)化角為邊:5)化角為邊:3.利用正弦定理可以
2025-06-19 16:34
【摘要】精品資源相似三角形題目集錦1.操作如圖,在正方形ABCD中,P是CD上一動(dòng)點(diǎn)(與C、D不重合).使得三角形的直角頂點(diǎn)與P點(diǎn)重合,并且一條直角邊始終經(jīng)過(guò)點(diǎn)B,另一直角邊與正方形的某一邊所在直線交于點(diǎn)E.探究(1)觀察操作猜想哪一個(gè)三角形也△.(2)當(dāng)點(diǎn)P位于CD的中點(diǎn)時(shí),你得到的三角形與△BPC的周長(zhǎng)比是多少?
2025-08-04 03:40
【摘要】官方網(wǎng)站:相似三角形及其性質(zhì)一、課堂講解知識(shí)點(diǎn)1、三角對(duì)應(yīng)相等,三邊對(duì)應(yīng)成比例的三角形叫相似三角形。如△ABC與△A/B/C/相似,記作:△ABC∽△A/B/C/。相似三角形的比叫相似比相似三角形的定義既是相似三角形的性質(zhì),也是三角形相似的判定方法。注意
2025-04-17 07:51
【摘要】......個(gè)性化輔導(dǎo)授課案教師:盧天明學(xué)生:時(shí)間2016年月日時(shí)段相似三角形的判定教學(xué)目
2025-04-17 07:43
【摘要】......【一】知識(shí)梳理【1】比例①定義:四個(gè)量a,b,c,d中,其中兩個(gè)量的比等于另兩個(gè)量的比,那么這四個(gè)量成比例②形式:a:b=c:d,③性質(zhì):基本性質(zhì):ac=bd1、可以把比例式與等積式互
2025-03-25 06:30
【摘要】第一篇:初中數(shù)學(xué)三角形知識(shí)點(diǎn)填空 1、定理三角形兩邊的和____________第三邊 2、推論三角形兩邊的差 3、三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于___________ 4、推論1直角...
2025-10-20 01:45
【摘要】1.如圖,在△ABC中,D是BC上一點(diǎn),E是AD上一點(diǎn),且=,∠BAD=∠ACE.(1)求證:AC2=BC·CD;(2)若E是△ABC的重心,求的值.2.已知△ABC中,AB=AC=5,BC=8,點(diǎn)D在BC邊上移動(dòng),連接AD,將△ADC沿直線AD翻折,點(diǎn)C的對(duì)應(yīng)點(diǎn)為C1.(1)當(dāng)AC1⊥BC時(shí),CD的長(zhǎng)是多少?(2)設(shè)C
2025-03-25 06:32
【摘要】相似三角形說(shuō)課稿各位評(píng)委,各位老師:大家好,我是趙勇連。今天我講的內(nèi)容是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書北師大版八年級(jí)下冊(cè)第四章第5節(jié)《相似三角形》。我將從五個(gè)方面進(jìn)行我的說(shuō)課。一、教材分析(一)、教材所處的地位和作用:《相似三角形?》是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書北師大版八年級(jí)下冊(cè)第四章第5節(jié)內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了線段的比,形狀相同的圖形及相似多邊形
2025-08-20 19:21
【摘要】........全等三角形:⑴全等形:能夠完全重合的兩個(gè)圖形叫做全等形.⑵全等三角形:能夠完全重合的兩個(gè)三角形叫做全等三角形.理解:①全等三角形形狀與大小完全相等,與位置無(wú)關(guān);②一個(gè)三角形經(jīng)過(guò)平移、翻折、旋轉(zhuǎn)可以得到它的全等形;③三角形
2025-04-16 23:10
【摘要】相似三角形對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的三角形叫相似三角形.三角形相似判定:,對(duì)應(yīng)邊成比例。:平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似。1:兩角對(duì)應(yīng)相等,兩三角形相似。2:兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似。
2024-11-09 12:54
【摘要】全等三角形:⑴全等形:能夠完全重合的兩個(gè)圖形叫做全等形.⑵全等三角形:能夠完全重合的兩個(gè)三角形叫做全等三角形.理解:①全等三角形形狀與大小完全相等,與位置無(wú)關(guān);②一個(gè)三角形經(jīng)過(guò)平移、翻折、旋轉(zhuǎn)可以得到它的全等形;③三角形全等不因位置發(fā)生變化而改變。.:理解:①長(zhǎng)邊對(duì)長(zhǎng)邊,短邊對(duì)短邊;最大角對(duì)最大角,最小角對(duì)最小角;②對(duì)應(yīng)角的對(duì)邊為對(duì)應(yīng)邊,對(duì)應(yīng)邊對(duì)的角為對(duì)應(yīng)角
2025-04-16 23:09
【摘要】......全等三角形知識(shí)點(diǎn)總結(jié)及復(fù)習(xí)一、知識(shí)網(wǎng)絡(luò)二、基礎(chǔ)知識(shí)梳理(一)、基本概念1、“全等”的理解全等的圖形必須滿足:(1)形狀相同的圖形;(2)大小相等的圖形;即能夠完全重合的兩個(gè)圖形
2025-04-16 22:13
【摘要】......相似三角形綜合培優(yōu)題型基礎(chǔ)知識(shí)點(diǎn)梳理:知識(shí)點(diǎn)1有關(guān)相似形的概念(1)形狀相同的圖形叫相似圖形,在相似多邊形中,最簡(jiǎn)單的是相似三角形.(2)如果兩個(gè)邊數(shù)相同的多邊形的對(duì)應(yīng)角相等,
2025-06-25 00:16
【摘要】九、如下圖,△ABC中,AD∥BC,連結(jié)CD交AB于E,且AE∶EB=1∶3,過(guò)E作EF∥BC,交AC于F,S△ADE=2cm2,求S△BCE,S△AEF.十一、下圖中,E為平行四邊形ABCD的對(duì)角線AC上一點(diǎn),AE∶EC=1∶3,BE的延長(zhǎng)線交CD的延長(zhǎng)線于G,交AD于F,求證:BF∶FG=1∶2. 26.(2010年長(zhǎng)沙)如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊分別在x軸和y
2025-03-25 06:31
【摘要】相似三角形與全等三角形的綜合復(fù)習(xí)友情提示:請(qǐng)根據(jù)課本相關(guān)內(nèi)容,快速解決下列問(wèn)題,8分鐘后交流展示你的成果?!疚曳此?,我梳理】(一)相似三角形1.定義:各角對(duì)應(yīng)________,各邊對(duì)應(yīng)成________的兩個(gè)三角形叫做相似三角形.2.判定(1)平行于三角
2024-11-24 14:14