【摘要】不等式的解法三、解不等式1.解不等式問題的分類(1)解一元一次不等式.(2)解一元二次不等式.(3)可以化為一元一次或一元二次不等式的不等式.①解一元高次不等式;②解分式不等式;③解無理不等式;④解指數(shù)不等式;⑤解對數(shù)不等式;⑥解帶絕對值的不等式;⑦解不等式組.2.解不等式時應(yīng)特別注意下列幾點:(1)正確應(yīng)用不等式的基本性質(zhì).(2)
2025-05-16 05:20
【摘要】課題:一元二次不等式的解法一元一次函數(shù)一元二次函數(shù)一元一次函數(shù)一元一次方程一元一次不等式它們之間有怎樣的聯(lián)系?請同學們解決如下問題:?(1)解方程2x-7=0?(2)作出函數(shù)y=2x-7的圖像?(3)解不等式2x-70請看下表:“三個一次”的聯(lián)
2024-10-19 08:19
【摘要】24bac???0??0??0??2(0)yaxbxca????的圖象??的根002????acbxax1212,()xxxx?兩相異實根122bxxa???兩相等實根無實根的解集)0(02????acbxax
2024-11-09 22:23
【摘要】一元二次不等式及其解法(1)一、創(chuàng)設(shè)情景,引入新課.問題:某同學想上網(wǎng)查資料,現(xiàn)有兩家網(wǎng)吧可供選擇。A網(wǎng)吧每小時收費(不足1小時的按1小時計算);B網(wǎng)吧的收費原則為,在用戶上網(wǎng)的第1個小時內(nèi)(含恰好1個小時)收費,第2個小時內(nèi)收費,以后每小時減少。(每天上網(wǎng)最多17小時)問:設(shè)該同學上網(wǎng)時間為x小時
2024-11-10 05:43
【摘要】第三講絕對值不等式的解法【基本知識】(1)含絕對值的不等式|x|<a與|x|>a的解集不等式a>0a=0a<0|x|<a{x|-a<x<a}|x|>a{x|x>a或x<-a}{x|x∈R且x≠0}R注:|x|以及|x-a|±|x-b|表示的幾何意義(|x|表示數(shù)軸上的點x到原點的距離;|x-a|±|x-b
2024-08-27 16:51
【摘要】不等式的性質(zhì)二定理1:(對稱性)ab?bb,bcac.定理3:(可加性)ab?a+cb+c.定理4:若ab,c0,則acbc.若ab,c0,則acbc(可乘性)一.溫故
2024-11-06 15:49
【摘要】一、問題嘗試:1、解不等式(x-1)(x-2)0解集為{x︱x2或x0呢?先轉(zhuǎn)化為(x-1)(x-2)0解集同(1).點評:對于一元二次不等式
2024-08-24 20:29
【摘要】§復習回顧:.00bcaccbabcaccbacbcaba??????????,那么,如果;,那么,如果;,那么如果2.絕對值的意義:??????????.0000時,當時,,當時,,當xxxxxx1.不等式的性質(zhì):?
2024-08-03 13:30
【摘要】不等式的證明(二)一、不等式的證明1、比較法(1)比較法證明不等式的步驟(2)比較法經(jīng)常證明什么樣的不等式(3)作差之后變形的思維2、綜合法(1)定義(2)綜合法經(jīng)常證明什么樣的不等式(3)綜合法經(jīng)常證明不等式時經(jīng)常用到:(1)a2≥
【摘要】1.不等式的定義:若baba????0baba????0baba????0;;.2.不等式的性質(zhì):推論:若a>b,且c>d,則a+cb+d(同向,可加性)(1)(對稱性)abba???(2)
2025-01-20 01:36
2024-08-02 19:51
【摘要】1一元二次不等式解法【知識要點】)0(42????aacb0??0??0??0)(?xf的解集??21xxxxx??或????????abxx2R0)(?xf的解集??21xxxx????)(
2025-01-07 16:45
【摘要】含參不等式專題(淮陽中學)編寫:孫宜俊當在一個不等式中含有了字母,則稱這一不等式為含參數(shù)的不等式,那么此時的參數(shù)可以從以下兩個方面來影響不等式的求解,首先是對不等式的類型(即是那一種不等式)的影響,其次是字母對這個不等式的解的大小的影響。我們必須通過分類討論才可解決上述兩個問題,同時還要注意是參數(shù)的選取確定了不等式
2024-08-04 06:19
【摘要】不等式和不等式組錢旭東淮安市啟明外國語學校蘇科版義務(wù)教育課程標準實驗教科書九年級復習課回顧·知識一元一次不等式(組)的應(yīng)用一元一次不等式(組)的解法一元一次不等式(組)解集的含義一元一次不等式(組)的概念不等式的性質(zhì)一元一次不等式和一元一次不等式組回顧·知識:含
2024-10-12 13:38
【摘要】指數(shù)、對數(shù)方程與不等式的解法注:以下式子中,若無特別說明,均假設(shè)且.一、知識要點:1、指數(shù)方程的解法:(1)同底去底法:;(2)化成對數(shù)式:;(3)取同底對數(shù):.2、對數(shù)方程的解法:(1)同底去底法:;(2)化成指數(shù)式:;(3)取同底指數(shù):.3、指數(shù)不等式的解法:(1)同底去底法:時,;時,;(2)化成對數(shù)式:時,;
2025-06-25 17:04